Influence of growth impurities on thermal defect formation in monocrystalline silicon
DOI:
https://doi.org/10.15330/pcss.22.3.437-443Keywords:
monocrystalline silicon, oxygen, carbon, magnetic susceptibility, microhardness, heat treatmentAbstract
The influence of growth impurities (oxygen and carbon) on the thermalsdefect formation in silicon single crystals has been studied. Annealing was carried out in the temperature range 700-1100°C in steps of 50°C for 5 hours at each temperature. The magnetic, micromechanical and structural properties of annealed silicon single crystals have been experimentally studied. The distribution of defects formed at different annealing temperatures has been studied. The correlation between changes of magnetic susceptibility, microhardness and rearrangement of structural defects in crystals after their heat treatment is revealed. Concentrations and sizes of magnetically ordered clusters are estimated. Interpretation of the obtained experimental results is offered.
References
C. Claeys, E. Simoen, V. Neimash, A. Kraitchinskii, M. Krasko, O. Puzenko, A. Blondeel, P. Clauws, Jornal of the Electrochemical Society, 148(12), G738 (2001); https://iopscience.iop.org/article/10.1149/1.1417558.
M. David, E. Simoen, C. Claeys, V. Neimash, M. Kras’ko, A. Kraitchinskii, V. Voytovych, A. Kabaldin, J. Barbot, Journal of Physics: Condensed Matter, 17, S2255 (2005); https://iopscience.iop.org/article/10.1088/0953-8984/17/22/013/meta.
V.B. Neymash, V.V. Voytovych, A.M. Kraychynsʹkyy, L.I. Shpinar, M.M. Krasʹko, V.M. Popov, A.P. Pokanevych, M.I. Horodysʹkyy, Yu.V. Pavlovsʹkyy, V.M. Tsmotsʹ, O.M. Kabalʹdin, Ukrainian Journal of Physics, 50(5), 492 (2005); http://archive.ujp.bitp.kiev.ua/files/journals/50/5/500513p.pdf.
V.B. Neimash, V.V. Voitovych, M.M. Kras’ko, A.M. Kraitchinskii, O.M. Kabaldin, Yu.V. Pavlovs’kyi, V.M. Tsmots’, Ukrainian Journal of Physics 50(11), 1273 (2005); http://archive.ujp.bitp.kiev.ua/files/journals/50/11/501110p.pdf.
C.A. Londos, E.N. Sgourou, D. Timerkaeva, A. Chroneos, Journal of Applied Physics 114, 113504 (2013); https://doi.org/10.1063/1.4821116.
Deren Yang, Jia Chu, Jin Xu, Duanlin Que, Journal of Applied Physics 93(11), 8926 (2003); https://doi.org/10.1063/1.1569978.
V.M. Tsmotsʹ, I.S. Panʹkiv, L.I. Panʹkiv, YU.V. Pavlovsʹkyy, V.V. Petrenko, T.S. Kavetsʹkyy, D.V. Labovka, M.M. Luchkevych, R.V. Okhrymovych, V.P. Salanʹ, M.V. Tsyuper, Patent Ukrayiny na vynakhid №77284 to 15.11.2006; https://iprop-ua.com/inv/ghuezi09/.
S.G. Kazantsev, T.N. Ovcharenko, Voprosy elektromekhaniki 123, 41 (2011); http://jurnal.vniiem.ru/text/1234/41.pdf.
V.S. Vavilov, V.F. Kiselev, B.N. Mukashev, Defekty v kremnii i na yego poverkhnosti (Nauka, Moskva, 1990).
V.Ye. Kustov, M.G. Mil'vidskiy, Yu.G. Semenov, B.M. Turovskiy, V.I. Shakhovtsov, V.L. Shindich, Fizika i tekhnika poluprovodnikov, 20(2) 270 (1986); http://www.mathnet.ru/links/a86505ab46f6441b0d2e2de646e22bdf/phts60.pdf.
D.Y. Tetelʹbaum, A.A. Ezhevskyy, A.N. Mykhaylov, Fizika i tekhnika poluprovodnikov, 37(11), 1380 (2003); https://journals.ioffe.ru/articles/5410.
L.S. Vlasenko, M.P. Vlasenko, V.A. Kozlov, V.V. Kozlovskiy, Fizika i tekhnika poluprovodnikov 33(10), 1164 (1999); DOI: https://journals.ioffe.ru/articles/35875.
P.G. Litovchenko, N.T. Pavlovska, Yu.V. Pavlovskyy, Yu.O. Ugrin, G. Luka, I.P. Ostrovskyy, Semiconductor Physics, Quantum Electronics & Optoelectronics 17(4), 416 (2014); https://doi.org/10.15407/spqeo17.04.416.
V.M. Tsmotsa, P.G. Litovchenkob, N.T. Pavlovskaa, Yu.V. Pavlovskyya, I. P. Ostrovskyy. Semiconductors, 44(5), 623 (2010); https://link.springer.com/article/10.1134/S1063782610050131.
V.M. Tsmots, P.G. Litovchenko, N.N. Novikov, Yu.V. Pavlovskyy, H.M. Khlyap, M.M. Luchkevych, V.P. Salan, B.D. Patsai, Physica Status Solidi (A), 205(2), 368 (2008); https://doi.org/10.1002/pssa.200622104.