Investigation of the Effect of Temperature on Ultrasonic, Mechanical and Thermal Properties in Single Silver Nanowire
DOI:
https://doi.org/10.15330/pcss.23.2.285-292Keywords:
silver nanowire, elastic properties, thermal properties, ultrasonic propertiesAbstract
The present paper reports the elastic, mechanical and thermophysical properties of silver nanowire (Ag NW) using ultrasonic techniques at temperature dependent. Higher order elastic constants are calculated using Coulomb and Born-Mayer potential up to second nearest neighbour. To compute mechanical parameters such as young modulus, bulk modulus, shear modulus tetragonal modulus, Poisson's ratio, fracture to toughness ratio and Zener anisotropy factor for finding imminent performance of the single silver nanowire at temperature dependent using second order elastic constants. The Ag NW is found to be brittle in nature at room temperature. Finally, we have evaluated the ultrasonic velocities, ultrasonic attenuation due to phonon–phonon interaction and thermoelastic relaxation for longitudinal wave and shear waves along <100>, <110> and <111> crystallographic directions in the temperature range 100-300K of silver nanowire using the higher order elastic constants. The attained results are discussed in correlation with available outcomes on these properties for the silver nanowire.
References
Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Adv. Mater. 23, 453 (2011); https://doi.org/10.1002/adem.200300567.
S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.- J. Ko, J. Y. Kim, H. Ko, Nano Lett. 15, 7933 (2015); https://doi.org/10.1021/acs.nanolett.5b03019.
S. De, T. M. Higgins, P. E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, Acs. Nano. 3, 1767 (2009); https://doi.org/10.1021/nn900348c.
L. B. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Acs. Nano. 4, 2955 (2010); https://doi.org/10.1021/nn1005232.
L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, W. You, ACS Appl. Mater. Interfaces. 3, 4075 (2011); https://doi.org/10.1021/am2009585.
N. Stojanovic, J.M. Berg, D.H.S. Maithripala, M. Holtz, Appl. Phys. Lett. 95, 091905 (2009); https://doi.org/10.1021/am2009585.
M. H. Chang , H.A. Cho, Y.S. Kim, E.J. Lee, J.Y. Kim, Nanoscale Res Lett. 9, 330 (2014); https://doi.org/10.1186/1556-276X-9-375.
Z. Cheng, L. Liu, S. Xu, M. Lu, Z. Wang, Scientific Reports 5, 10718 (2015); https://doi.org/10.1038/srep10718.
H. Gleiter, Acta Mater. 48, 1 (2000); https://doi.org/10.1016/S1359-6454(99)00285-2.
S. Cuenot, C. Frétigny, S. Demoustier-Champagne, B. Nysten, Phys. Rev. 69, 165410 (2004); https://doi.org/10.1103/PhysRevB.69.165410.
K. K. Caswell, C.M. Bender, C.J. Murphy, Nano Lett. 3, 667 (2003); https://doi.org/10.1007/s12598-010-0139-7.
J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 8, 689 (2008); https://doi.org/10.1021/nl073296g.
K. Brugger, Phys. Rev. 133, A1611 (1964); https://doi.org/10.1103/PhysRev.133.A1611.
P. B. Ghate, Phys. Rev. 139, A1666 (1965); https://doi.org/10.1103/PhysRev.139.A1666.
S. Mori, Y. Hiki, J. Phys. Soc. Jpn. 45, 1449 (1975); https://doi.org/10.1143/JPSJ.45.1449.
P. K. Yadawa, R.R. Yadav, Multidiscipline Modeling in Materials and Structures 5, 59 (2009); https://doi.org/10.1108/15736105200900004.
R. Hill, Proc. Phys. Soc., Sec. A 65, 349 (1952); https://doi.org/10.1088/0370-1298/65/5/307.
D. Singh, S. Kaushik, S.Tripathi, V. Bhalla, A.K. Gupta, Arab J Sci Eng. 39, 485 (2014); https://doi.org/10.1007/s13369-013-0845-1.
S. F. Pugh, Philos. Mag. 45, 823 (1954); https://doi.org/10.1080/14786440808520496.
D. G. Pettifor, Mater. Sci. Technol. 8, 345 (1992); https://doi.org/10.1179/mst.1992.8.4.345.
S. Bhajanker, V. Srivastava, G. Pagare, S.P. Sanyal, J. Phys.: Conf. Ser. 377, 01208037 (2012); https://link.springer.com/article/10.1007/s10765-016-2038-0.
V. Bhalla, D. Singh, S.K. Jain, International Journal of Computational Materials Science and Engineering 5(3); 1650012 (2016); https://doi.org/10.1142/S2047684116500123.
W. P. Mason, Academic Press Inc. 237 (1965); https://www.worldcat.org/title/physical-acoustics-principles-and-methods-vol-1-part-a/oclc/463203402.
W. P. Mason, T.B. Bateman, J. Acoust. Soc. 40, 852 (1966); https://doi.org/10.1121/1.1910158.
D. E. Gray ed., AIP Handbook, Mc Graw Hill Co. Inc. p.4-44, IIIrd edition. (New York, 1956); http://web.ipb.ac.id/~erizal/hidrolika/Chow%20-%20OPEN%20CHANNEL%20HYDRAULICS.pdf.
C. Oligschleger, R.O. Jones, S.M. Reimann, H.R. Schober, Phys. Rev. 53(10), 6165 (1996); https://doi.org/10.1103/PhysRevB.102.099901.
M. Landa, V. Novak, P. Sedlak, P. Sittner, Ultrasonics 42, 519 (2004); https://doi.org/10.1016/j.ultras.2004.01.029.
D. Singh, D.K. Pandey, P.K. Yadawa, Cent. Eur. J. Phys. 7, 198 (2009); https://doi.org/10.1142/S0217984911027686.
V. Kanchana, G. Vaitheeswaran, X. Zhang, Y. Ma, A. Svane, O. Erriksson, Phys. Rev. B 84, 205135 (2011); https://doi.org/10.1103/PhysRevB.84.205135.
S.P. Singh, P.K. Yadawa, P.K. Dhawan, A.K. Verma, R.R. Yadav, Cryogenics. 100, 105 (2019); https://doi.org/10.1080/01411594.2020.1813290.
P. K. Yadawa, Journal of Theoretical and Applied Physics 10, 203 (2016); https://doi.org/10.1007/s40094-016-0216-x.
D. Singh, P.K. Yadawa, S.K. Sahu, Cryogenics 50, 476 (2010); https://doi.org/10.1016/j.cryogenics.2010.04.005.
S. Mourdikoudis, R. M. Pallares, N. T. K. Thanh, Nanoscale 10, 12871 (2018). https://doi.org/10.1039/C8NR02278J.