Interaction between the components in Tm-Cr-Ge system at 1070 K

Authors

  • L. Romaka Ivan Franko National University of Lviv, Lviv, Ukraine
  • Yu. Stadnyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • V.V. Romaka Institute for Solid State Research, IFW-Dresden, Dresden, Germany
  • M. Konyk Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.4.633-639

Keywords:

intermetallics, ternary system, phase equilibria, crystal structure

Abstract

The phase equilibrium diagram of the Tm–Cr–Ge ternary system was constructed at a temperature 1070 K based on the results of X-ray phase, microstructural analyzes and energy-dispersive X-ray spectroscopy in the whole concentration range. At the temperature of investigation, two new ternary compounds are realized in the system: TmCr6Ge6 (SmMn6Sn6 structure type, space group P6/mmm, a=0.51506(1), c=0.82645(2) nm) and Tm4Cr4Ge7 (Zr4Co4Ge7 structure type, space group I4/mmm, а=1.39005(9), с=0.54441(1) nm). Inclusion of Cr atoms in the structure of the binary germanide TmGe2 (structure type ZrSi2) up to 10 at. % Cr leads to the formation of a solid solution TmCrxGe2 (x = 0-0.33).

References

P. S. Salamakha, Crystal structures and crystal chemistry of ternary rare-earth germanides, in: K.A. Gschneidner, Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare-Earths, 27, North-Holland, Amsterdam, 1999, pp. 225–338.

M. Konyk, L. Romaka, L. Orovčik, V.V. Romaka, Yu. Stadnyk, Y-Cr-Ge ternary system at 1070 K, Visnyk Lviv. univ. Ser. Chem. 60(1), 38 (2019); https://doi.org/10.30970/vch.6001.038.

P.S. Salamakha, Y.M. Prots, The neodymium-(vanadium, chromium, manganese)-germanium systems, J. Alloys Compd. 215, 51 (1994); https://doi.org/10.1016/0925-8388(94)90817-6.

M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, Isothermal section of the Gd-Cr-Ge system at 1070 K, XVIII scient. Conf. “Lviv chemical reading-2021”, Lviv, 31 may-2 julay, 2021. H9 (2021).

M. Konyk, L. Romaka, V.V. Romaka, Yu. Stadnyk, P. Demchenko, A. Horyn, Isothermal section at 8000C of the phase diagram of the Er-Cr-Ge ternary system, Coll. Abs. XIV Int. Conf. Cryst. Chem. Interm. Compd. September 22-26, 2019. Lviv, Ukraine, 61 (2019).

H. Bie, O.Ya. Zelinska, A.V. Tkachuk, A. Mar, Structure and physical properties of rare-earth chromium germanides RECrGe3 (RE=La-Na, Sm), Chem. Mater. 19, 4613 (2007); https://doi.org/10.1021/cm071276+.

A.V. Morozkin, Y.D. Seropegin, V.K. Portnov, I.A. Sviridov, A.V. Leonov, New ternary compounds R117Fe52Ge112 (R=Gd, Dy, Ho, Er, Tm) and Sm117Cr52Ge112 of the Tb117Fe52Ge112-type structure, Mater. Res. Bull. 33, 903 (1998); https://doi.org/10.1016/S0025-5408(98)00051-8.

J.H.V.J. Brabers, K.H.J. Buschow, F.R. de Boer, Magnetic properties of RCr6Ge6 compounds, J. Alloys Compd. 77, 205 (1994); https://doi.org/10.1016/0925-8388(94)90769-2.

P. Schobinger-Papamantelljsa, J. Rodriguez-Carvajalb, K.H.J. Buschow, Ferrimagnetism and disorder in the RCr6Ge6 compounds (R=Dy, Ho, Er, Y): a neutron study, J. Alloys Compd. 92, 256 (1997); https://doi.org/10.1016/S0925-8388(96)03109-X.

P. Schobinger-Papamantellos, J. Rodriguez-Carvajal, K.H.J. Buschow, Atomic disorder and canted ferrimagnetism in the TbCr6Ge6 compound. A neutron study, J. Alloys Compd. 67, 255 (1997); https://doi.org/10.1016/S0925-8388(96)02872-1.

W. Kraus, G. Nolze, POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr. 29, 301 (1996); https://doi.org/10.1107/S0021889895014920.

L. Akselrud, Yu. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803 (2014); https://doi.org/10.1107/S1600576714001058.

T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, 378–381, 118 (2001); https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

T.B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1990).

H Okamoto. Desk Handbook: Phase Diagrams for Binary Alloys, Materials Park (OH): ASM (2000).

H. Fukuoka, M. Yoshikawa, K. Baba, S. Yamanaka, Preparation and structures of lanthanoid germanides, PrGe3.36, NdGe3.25, and TmGe3 with double square Ge mesh structures, Bull. Chem. Soc. Jpn., 83, 323 (2010); https://doi.org/10.1246/bcsj.20090310.

G. Venturini, Orthorhombic TmGe1.9, with a ZrSi2-ErGe1.83 intergrowth structure, J. Alloys Compd., 308, 200 (2000); doi.org/10.1016/S0925-8388(00)00895-1.

P.H. Tobash, G. DiFilippo, S. Bobev, N. Hur, J.D. Thompson, J.L. Sarrao, Structure and properties of Gd3Ge4. The orthorhombic RE3Ge4 structures revisited (RE=Y, Tb-Tm), Inorg. Chem., 46, 8690 (2007); https://doi.org/10.1021/ic7009034.

G. Venturini, I. Ijjaali, B. Malaman, Vacancy ordering in AlB2-type RGe2-x compounds (R=Y, Nd, Sm, Gd-Lu), J. Alloys Compd., 284, 262 (1999); https://doi.org/10.1016/S0925-8388(98)00958-X.

P. Israiloff, H. Vollenkle, A. Wittmann, The crystal structure of the compounds V11Ge8, Cr11Ge8, and Mn11Ge8, Monatsh. Chem., 105, 1387 (1974); https://doi.org/10.1007/BF00909876.

M. Kolenda, J. Stoch, A. Szytula, Esca and magnetic studies of the Cr-Ge system, J. Magn. Magn. Mater., 20, 99 (1980); https://doi.org/10.1016/0304-8853(80)90532-6.

B. Malaman, G. Venturini, B. Chafik El Idrissi, E. Ressouche, Magnetic properties of NdMn6Sn6 and SmMn6Sn6 compounds from susceptibility mesurements and neutron diffraction study, J. Alloys Compd., 252, 41 (1997); https://doi.org/10.1016/S0925-8388(96)02717-X.

H. Bie, A.V. Tkachuk, A. Mar, Structure and magnetic properties of rare-earth chromium germanides RECrxGe2 (RE=Sm, Gd-Er), J. Solid State Chem. 182, 122 (2009); https://doi.org/10.1016/j.jssc.2008.10.013.

Published

2022-11-02

How to Cite

Romaka, L., Stadnyk, Y., Romaka, V., & Konyk, M. (2022). Interaction between the components in Tm-Cr-Ge system at 1070 K. Physics and Chemistry of Solid State, 23(4), 633–639. https://doi.org/10.15330/pcss.23.4.633-639

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)

<< < 1 2 3 4