Thermoelectric properties of composite materials based on lead telluride
DOI:
https://doi.org/10.15330/pcss.23.2.368-374Keywords:
lead telluride, thermoelectric properties, composite materialsAbstract
The study of composite materials based on mechanical mixtures of microdispersed PbTe and nanodispersed additional component ZnO, TiO2, SiO2 (50-70 nm) or microdispersed CdTe (32-50 μm) was performed. The purpose of this study is to reduce the thermal conductivity of the material. Measurements of specific electrical conductivity, Seebeck coefficient and thermal conductivity coefficient of the studied samples were measured. It is established that the achievement of low values of the thermal conductivity is complicated by the processes of agglomeration of the nanodispersed component at the temperatures of production and processing of composite samples, as well as the chemical interaction of the components of the additive and matrix.
References
Zhao Li-Dong, P. Dravid Vinayak, and Mercouri G. Kanatzidis. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 7, 251 (2014); https://doi.org/10.1039/C3EE43099E.
Joseph R. Sootsman, Duck Young Chung, and Mercouri G. Kanatzidis. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. 48, 8616 (2009); https://doi.org/10.1002/anie.200900598.
A.V. Dmitriev, I.P. Zvyagin. Modern trends in the development of physics of thermoelectric materials. Advances in Physical Sciences 180(8), 821 (2010).
Hongchao Wang, Je-Hyeong Bahk, Chanyoung Kang, Junphil Hwang, Kangmin Kim, Jungwon Kim, Peter Burke, John E. Bowers, Arthur C. Gossard, Ali Shakouri, and Woochul Kim. Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectrics. PNAS, 111(30), 10949 (2014); https://doi.org/10.1073/pnas.1403601111.
L.I. Anatychuk, Thermoelectricity.V.1. Physics of Thermoelectricity. Kyiv, Chernivtsi: Institute of Thermoelectricity, 376 (1998).
Terry M. Tritt, Harald Böttner, Lidong Chen. Thermoelectrics: Direct Solar Thermal Energy Conversion. MRS Bulletin. 33, 366 (2008) https://doi.org/10.1557/mrs2008.73.
Jin-cheng Zheng. Recent advances on thermoelectric materials. Front. Phys. China 3(3), 269 (2008); https://doi.org/10.1007/s11467-008-0028-9.
A.V. Kuznetsov, S.D. Letyuchenko, V.V. Motskin, Investigation of the relationship between the properties of raw and extruded thermoelectric materials. Thermoelectricity 2, 43 (2002).
M.K. Zhitinskaya, V.I. Kaidanov, S.N. Likov On the features of the electrical conductivity of n-PbTe polycrystals at low temperatures. Physics and technology of semiconductors 1, 183 (1978).
R.Ya. Popilsky., Yu.E. Pivinsky Pressing powder ceramic mass. Metallurgy 176 (1983).
M. Scheele, S.-O. Peters, A. Littig, A. Kornowski, Ch.Klinke, H. Weller, Thermoelectric properties of lead chalcogenide core-shell nanostructures. Cond. Mat. Sci. 1-12 (2012); https://doi.org/10.1021/nn2017183.
Martin J., Nolas G.S. Syntesis and characterization of chalcogenide nanocomposites. Advances in electronic ceramics. 221 (2008).
Martin J., Wang Li, Chen L., Nolas G.S. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009); https://doi.org/10.1103/PhysRevB.79.115311.
M.I. Alymov Volumetric consolidated materials. Abstracts of the Open School-Conference of the CIS countries "Ultrafine-grained and nanostructured materials -2010" (Ufa, October 11-15, 2010). Ufa, Bashkir University, 2010. 302 p.
L.-D. Zhao., B.-P. Zhang, W.-S. Liu, J.-F. Li. Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound, Appl. Phys. 105, 023704 (2009); https://doi.org/10.1063/1.3063694.
H. Alam, S. Ramakrishna.. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy. 2013; http://dx.doi.org /10.1016/j.nanoen.2012.10.005.
Chen Zh.-G., Han G., Yang L., Cheng L., Zou J. Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science: Materials International 22(6), 535–549 (2012); https://doi.org/10.1016/j.pnsc.2012.11.011.
Pichanusakorn P., Bandaru Pr.. Nanostructured thermoelectrics. Materials Science and Engineering R. 67, 19 (2010); https://doi.org/10.1016/j.mser.2009.10.001.
S. Hwang, S.-I. Kim, K. Ahn, J. W. Roh, D.-J. Yang, S.-M. Lee, K.-H. Lee Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal nanoparticle decoration. Journal of Electronic Materials (2012); http://dx.doi.org/10.1007/s11664-012-2280-6.
O.B. Sokolov, B.A. Efimova. On crack resistance of semiconductor materials on the example of p-PbTe, NM 28(1), 61 (1992).
I.V. Gorichok, I.M. Lishchynsky, S.I. Mudry, O.S. Oberemok, T.O. Semko, I.M. Khatsevich, O.M. Matkivsky, G.D. Mateik Technological aspects of thermoelectric PbTe production. Sensor electronics and microsystem technologies 14(3), 53 (2017).
I.V. Horichok, M.O. Galushchak, O.M. Matkivskyj, I.P. Yaremij, R.Ya. Yavorskyj, V.S. Blahodyr, O.I. Varunkiv, T.O. Parashchuk; Thermoelectric Properties of Nanostructured Materials Based on Lead Telluride. Journal of Nano- and Electronic Physics 9(5), 05022-1 (2017).
T. Ikeda, V.A. Ravi, L.A. Collins, S.M. Haile, G.J. Snyder. Development and Evolution of Nanostructure in Bulk Thermoelectric Pb-Te-Sb Alloys. J. Elect. Mat. 37, 716 (2007); https://doi.org/10.1007/s11664-007-0175-8.
Y. Pei, A. LaLonde, N.A. Heinz, G. J. Snyder, High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe-CdTe. Adv.Energy Mater. 2, 670 (2015); https://doi.org/10.1002/aenm.201100770.