Solar cells based on CdTe thin films (Part II)
DOI:
https://doi.org/10.15330/pcss.24.1.134-145Keywords:
solar cells, thin films, CdTe, photosensitivity, heterostructuresAbstract
This paper discusses the use of semiconductor solar cells based on thin-film cadmium telluride (CdTe) in modern energy production. The advantages and disadvantages of using CdTe thin-film solar cells are analyzed, and arguments are presented in favor of the implementation of mass production technologies for CdTe solar modules, which can compete with silicon analogs in terms of compromise between efficiency and cost. The physical and chemical properties of the binary Cd-Te system are described, and the relationship between the physical, chemical, electrical, and optical properties of CdTe is analyzed, making it attractive for use in thin-film solar cells. Special attention is given to the investigation of photovoltaic properties, which are important parameters for determining photoconductivity, and the advantages and disadvantages of CdTe film photovoltaic properties are discussed. CdTe thin-film heterostructures (HSs), which are important components of modern solar cells, are considered, and their main advantages and disadvantages are described. It is argued that simple methods of manufacturing and forming HSs, which do not require complex and expensive equipment, are an important advantage of CdTe-based solar cell technology.
References
M.A. Green, E.D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, & A.W. Ho‐Baillie, Solar cell efficiency tables (Version 55),Progress in Photovoltaics: Research and Applications, 28(1), 3 (2020); https://doi.org/10.1002/pip.3228.
T.M. Mazur, V.V. Prokopiv, M.P. Mazur, U.M. Pysklynets, Solar cells based on CdTe thin films, Physics and chemistry of solid state, 22(4), 817 (2021); https://doi.org/10.15330/pcss.22.4.817-827.
L.A. Kosyachenko, & E.V. Grushko, Prospects for the Use of Thin-Film Cadmium Telluride in Solar Energetics, Ukr. Phys. Journ., Rev., 7(1), 3 (2012); http://archive.ujp.bitp.kiev.ua/files/reviews/7/1/r070101pu.pdf.
B.E. McCandless, CdTe solar cells: Processing limits and defect chemistry effects on open circuit voltage, MRS Online Proceedings Library, 1538(1), 249 (2013); https://doi.org/10.1557/opl.2013.1017.
M.A. Green, E.D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, & A. W. Ho‐Baillie, Solar cell efficiency tables (Version 55), Progress in Photovoltaics: Research and Applications, 28(1), 3 (2020); https://doi.org/10.1002/pip.3228.
M.A. Green, E.D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, &, H. Xiaojing, Solar cell efficiency tables (Version 59), Progress in Photovoltaics: Research and Applications, 30(1), 1062 (2021); https://doi.org/10.1002/pip.3506.
V.P. Makhniy, M.M. Berezovskiy, O.V. Kinzerska, M.P. Mazur, T.M. Mazur, V.V. Prokopiv, Prospects of using surface and barrier CdTe-diodes in solar energy, Sensor Electronics and Мicrosystem Technologies, 16(2), 42 (2019); https://doi.org/10.18524/1815-7459.2019.2.171227.
B. E McCandless, & J. R. Sites, Cadmium telluride solar cells, Handbook of photovoltaic science and engineering, 600 (2011); https://kashanu.ac.ir/Files/Content/Handbook.pdf.
D.V Korbutyak, S.V. Melnichuk, E.V Korbut, & M.M. Borisyuk, (2000). Cadmium telluride: impurity-defect states and detector properties.( Ivan Fedorov: Kyiv, 198 (2000)).
D.V. Korbutiak, O.V. Kovalenko, S.I. Budzuliak, S.M. Kalytchuk, I.M. Kupchak, Light-rectifying properties of quantum dots of semiconductor compounds A2B6, Ukrainian Physical Journal, 7(1), 95 (2012); http://archive.ujp.bitp.kiev.ua/files/reviews/7/1/r070103pu.pdf.
R. Grill, & A. Zappettini, Point defects and diffusion in cadmium telluride. Progress in crystal growth and characterization of materials, 48, 209 (2004); https://doi.org/10.1016/j.pcrysgrow.2005.06.001
V.V. Prokopiv, I.V. Horichok, V.V. Prokopiv, & L.V. Turovska. Point defects of Cadmium, Tin and Lead Tellurides. Ivano-Frankivsk, 248 p. (2016); http://hdl.handle.net/123456789/2541.
J. H. Greenberg, P–T–X phase equilibrium and vapor pressure scanning of non-stoichiometry in the Cd–Zn–Te system, Progress in crystal growth and characterization of materials, 47(2-3), 196 (2003); https://doi.org/10.1016/j.pcrysgrow.2005.02.001.
R. Fang, & R.F. Brebrick, CdTe I: Solidus curve and composition-temperature-tellurium partial pressure data for Te-rich CdTe (s) from optical density measurements, Journal of Physics and Chemistry of Solids, 57(4), 443 (1996); https://doi.org/10.1016/0022-3697(95)00251-0.
D.Y. Goswami, S. Vijayaraghavan, S. Lu, & G. Tamm, New and emerging developments in solar energy, Solar energy, 76(1-3), 33 (2004); https://doi.org/10.1016/S0038-092X(03)00103-8.
H. Okamoto, & H. Okamoto, Phase diagrams for binary alloys, 314, Materials Park, OH: ASM international, (2000); https://www.asminternational.org/documents/10192/1849770/57751G_Frontmatter. pdf.
O. Knacke, & K. Hesselmann, Thermochemical properties of inorganic substances, Springer, (1991); https://worldcat.org/en/title/644053530.
T. Mazur, V. Prokopiv, L. Turovska, Quasi-chemistry of intrinsic point defects in cadmium telluride thin films, Molecular Crystals and Liquid Crystals, 671(1), 85 (2018); https://doi.org/10.1080/15421406.2018.1542088.
L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, & J. Rand, Silicon nanowire solar cells, Applied physics letters, 91(23), 233117 (2007); https://doi.org/10.1063/1.2821113.
V.V. Prokopiv, O.B. Kostyuk, B.S. Dzundza T.M. Mazur, L.V. Turovska, O.M. Matkivskyi, M.V. Deychakivskyi, Electrical properties of CdTe thin layers, Physics and chemistry of solid state, 20(4), 372 (2019); https://doi.org/10.15330/pcss.20.4.372-375.
O. Madelung, (Ed.), Semiconductors: group IV elements and III-V compounds, Springer Science & Business Media, (2012); https://doi.org/10.1007/978-3-642-45681-7.
V. Prokopiv, I. Horichok, T. Mazur, O. Matkivsky, L. Turovska, Thermoelectric materials based on samples of microdispersed PbTe and CdTe, Proceedings of the 2018 IEEE 8th International Conference "Nanomaterials: Applications and Properties", NAP 2018, (2018); https://doi.org/10.1109/NAP.2018.8915357.
B. Naidych, T. Parashchuk, I. Yaremiy, M. Moyseyenko, O. Kostyuk, O. Voznyak, ... & L. Nykyruy, Structural and thermodynamic properties of Pb-Cd-Te thin films: Experimental study and DFT analysis, Journal of Electronic Materials, 50, 580-591 (2021); https://doi.org/10.1007/s11664-020-08561-5.
T. Mazur, M. Mazur, Thickness Dependence of the Kinetic Parameters in CdTe and PbTe Thin Films, Proceedings of the 2022 IEEE 12th International Conference "Nanomaterials: Applications and Properties", NAP 2022, (2022); https://doi.org/10.1109/NAP55339.2022.9934352.
T. Mazur, M. Slyotov, M. Mazur, O. Slyotov, Heterolayers of Hexagonal α-CdTe, Journal of Nano- and Electronic Physics, 14(5), 05029 (2022); https://doi.org/10.21272/jnep.14(5).05029.
R. Grill, J. Franc, P. Hoschl, I. Turkevych, E. Belas, P. Moravec, ... & K.W. Benz, High-temperature defect structure of Cd-and Te-rich CdTe, IEEE Transactions on Nuclear Science, 49(3), 1270 (2002); https://doi.org/10.1109/TNS.2002.1039650.
D.M. Freik, V.M. Chobanyuk, O.S. Krynytskyi, & I.V. Horichok, Photovoltaic trasformers of solar irradiation based on cadmium telluride. Part II. Achievements and State of Art. (Review). Physics and Chemistry of Solid State, 13(3), 744 (2012); http://page.if.ua/uploads/pcss/vol13/!1303-29.pdf.
T.M. Mazur, V.P. Makhniy, V.V. Prokopiv, M.М. Slyotov, Thermal annealing effect on optical properties of the cadmiun telluride films, Journal of Nano- and Electronic Physics. 9(5), 05047 (2017); http://doi.org/10.21272/jnep.9(5).05047.
S. H.Wei, S. B.Zhang, & A.Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, Journal of applied Physics, 87(3), 1304 (2000); https://doi.org/10.1063/1.372014.
B. Dzundza, O. Kostyuk, & T. Mazur, Software and Hardware Complex for Study of Photoelectric Properties of Semiconductor Structures, IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, 635 (2019); https://doi.org/10.1109/ELNANO.2019.8783544.
H.S. Patel, J.R. Rathod, K.D. Patel, V.M. Pathak, Structural and surface studies of vacuum evaporated Cadmium Telluride thin films, American J Mater Sci & Tech, 1, 11 (2012); https://doi.org/10.7726/ajmst.2012.1002.
M.A. Green, K. Emery, D.L. King, S. Igari, & W. Warta, Solar cell efficiency tables (version 20), Progress in photovoltaics, 10(5), 355 (2002); https://doi.org/10.1002/pip.453.
L. Nykyrui, Y. Saliy, R. Yavorskyi, Y. Yavorskyi, V. Schenderovsky, G. Wisz, & S. Górny, CdTe vapor phase condensates on (100) Si and glass for solar cells. In 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), 01PCSI26-1, IEEE (2017); https://doi.org/10.1109/NAP.2017.8190161.
T. Mazur, M. Slyotov, M. Mazur, V. Prokopiv, O. Kinzerska, O. Slyotov, Features of the cadmium chalcogenide substrates with surface nanostructure, Materials Today: Proceedings, (2021); https://doi.org/10.1016/j.matpr.2019.12.112.
S. Chander and M.S. Dhaka, Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells, Physica E, 84, 112 (2016); https://doi.org/10.1016/j.physe.2016.05.045.
P.K. Kalita, Temperature dependence of dc photoconductivity in CdTe thin films, Pramana, 60(6), 1247 (2003); https://www.ias.ac.in/public/Volumes/pram/060/06/1247-1257.pdf.
P.М. Gorley, V.P. Makhniy, P.P. Horley, Yu.V. Vorobiev and J. González-Hernández, Surface-Barrier Solar Cells Based On Monocrystalline Cadmium Telluride with the Modified Boundary, Solar Energy [Internet], (2010, Feb 1); http://dx.doi.org/10.5772/8061.
Mykhailo Slyotov, Tetiana Mazur, Volodymyr Prokopiv, Oleksii Slyotov, Myroslav Mazur, Sources of optical radiation based on ZnTe/ZnSe/ZnS heterostructures, Materials Today: Proceedings (2022); https://doi.org/10.1016/j.matpr.2022.03.476.
M.I. Elsmani, N. Fatima, M.P.A. Jallorina, S. Sepeai, M.S. Su’ait, N. Ahmad Ludin, M.A. Mat Teridi, K. Sopian, M.A. Ibrahim, Recent Issues and Configuration Factors in Perovskite-Silicon Tandem Solar Cells towards Large Scaling Production, Nanomaterials, 11, 3186 (2021); https://doi.org/10.3390/nano11123186.
V.K. Kamble, & V.B. Pujari, Electrical and micro-structural properties of cadmium chalcogenides: A comparative study, Int. J. Emerg. Technol. Appl. Eng, 5, 172 (2015); https://api.semanticscholar.org/CorpusID:16313665.
J.N. Duenow, J.M.Burst, D.S. Albin, D. Kuciauskas, S.W. Johnston, R.C. Reedy, & W.K. Metzger, Single-crystal CdTe solar cells with Voc greater than 900 mV, Applied Physics Letters, 105(5), 053903 (2014); https://doi.org/10.1063/1.4892401.
M.O. Reese, C.L. Perkins, J.M. Burst, S. Farrell, T.M. Barnes, S.W. Johnston, & W. K. Metzger, Intrinsic surface passivation of CdTe, Journal of Applied Physics, 118(15), 155305 (2015); https://doi.org/10.1063/1.4933186.
T.M. Mazur, M.M. Slyotov, V.V. Prokopiv, O.M. Slyotov, M.P. Mazur, Light emitters based on II-VI chalcogenides with nanostructured surface, Molecular Crystals and Liquid Crystals, 752, 95 (2022); https://doi.org/10.1080/15421406.2022.2091276.
V.P. Makhniy, Influence of thermal annealing on physical properties of surface layers of monocrystalline cadmium telluride, Surface, X-rays, synchrotron and neutron investigation, 2, 108 (2007); https://naukarus.com/vliyanie-termicheskogo-otzhiga-na-fizicheskie-svoystva-poverhnostnyh-sloev-monokristallicheskogo-tellurida-kadmiya.
X. Mathew, L.A. Kosyachenko, V.V. Motushchuk, O.F. Sklyarchuk, Requirements imposed on the electrical properties of the absorbed layer in CdTe-based solar cells, J. Materials Science: Materials in Electronics, 18, 1099 (2007); https://doi.org/10.1007/s10854-007-9317-2.
Nowshad Amin, et al., Encyclopedia of sustainable technologies, 11, (2017); https://doi.org/10.1016/B978-0-12-409548-9.10092-2.
L. Kosyachenko, Solar Energy, edited by R.D. Rugescu, Intech, Croatia, 105 (2010); https://cdn.intechopen.com/pdfs/8547/InTech-Chapter_download.pdf.
M. A.Green, E. D.Dunlop, J.Hohl‐Ebinger, M.Yoshita, N.Kopidakis, & A. W.Ho‐Baillie, Solar cell efficiency tables (Version 55), Progress in Photovoltaics: Research and Applications, 28(1), 3 (2021); https://doi.org/10.1002/pip.3228.