The effect of orthophosphoric acid on energy-intensive parameters of porous carbon electrode materials
DOI:
https://doi.org/10.15330/pcss.24.1.34-45Keywords:
porous carbon material, activating agent, specific surface area, pore size distribution, specific capacity, electrochemical capacitorAbstract
The effect of orthophosphoric acid concentration as an activating agent on the porous structure of carbon materials derived from apricot pits and energy-intensive parameters of electrochemical capacitors formed on their basis is studied. It is found that changing the ratio of the mass of the activating agent to the mass of the raw material in acid-activated porous carbon materials (PCMs), one can control the pore size distribution in the range of 0.5-20 nm and specific surface area in the range of 775-1830 m2/g. The use of cyclic voltammetry, impedance spectroscopy and chronopotentiometry made it possible to set the capacitive nature of charge accumulation processes in acid-activated PCMs, as well as to determine the contribution of a certain size of pores to the specific capacitance of PCM/electrolyte system.
References
V.D. Canh, S. Tabata, S. Yamanoi, Y. Onaka, T. Yokoi, H. Furumai, H. Katayama, Evaluation of Porous Carbon Adsorbents Made from Rice Husks for Virus Removal in Water, Water, 13(9), Art. 1280 (2021); https://doi.org/10.3390/w13091280.
J. Li, R. Holze, S. Moyo, S. Wang, S. Li, T. Tang, X. Chen, Three-dimensional hierarchical porous carbon derived from natural resources for highly efficient treatment of polluted water, Environ. Sci. Eur., 33, Art. 98 (2021); https://doi.org/10.1186/s12302-021-00527-6.
S. Sircar, T.C. Golden, M.B. Rao, Activated Carbon for Gas Separation and Storage, Carbon, 34(1) 1 (1996); https://doi.org/10.1016/0008-6223(95)00128-X.
Y. Wu, B.M. Weckhuysen, Separation and Purification of Hydrocarbons with Porous Materials, Angew, Chem. Int. Ed., 60(35), 18930 (2021); https://doi.org/ 10.1002/anie.202104318.
B.I. Rachiy, I.M. Budzulyak, E.A. Ivanenko, S.L. Revo, A composite of nanoporous carbon and thermally exfoliated graphite as an effective electrode material for supercapacitors, Surface Engineering and Applied Electrochemistry, 51(5), 501 (2015); https://doi.org/10.3103/S1068375515050129.
Y.Y. Starchuk, B.I. Rachiy, I.M. Budzulyak, P.I. Kolkovskyi, N.Y. Ivanichok, M.O. Halushchak, Electrochemical Properties of Hybrid Supercapacitors Formed Based on Nanoporous Carbon and Nickel Tungstate, Journal of Nano- and Electronic Physics, 13(6), Art. 06021 (2021); https://doi.org/10.21272/jnep.13(6).06021.
V. Boichuk, V. Kotsyubynsky, A. Kachmar, B. Rachiy, L. Yablon, Effect of Synthesis Conditions on Pseudocapacitance Properties of Nitrogen-Doped Porous Carbon Materials, Journal of Nano Research, 59, 112(2019); https://doi.org/10.4028/www.scientific.net/JNanoR.59.112
V.I. Mandzyuk, I.F. Myronyuk, V.M Sachko, B.I. Rachiy, Yu.O. Kulyk, I.M. Mykytyn, Structure and Electrochemical Properties of Saccharide-derived Porous Carbon Materials, Journal of Nano- and Electronic Physics, 10(2), Art. 02018 (2018); https://doi.org/ 10.21272/jnep.10(2).02018.
V.I. Mandzyuk, N.I. Nagirna, R.P. Lisovskyy, Morphology and Electrochemical Properties of Thermal Modified Nanoporous Carbon as Electrode of Lithium Power Sources, Journal of Nano- and Electronic Physics, 6(1) Art. 01017 (2014).
R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu, Y. Liu, J. Zhang, Y. Ha, B. Fei, H. Pan, Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries, Nano-Micro Letters, 13(1), Art. 151 (2021); https://doi.org/10.1007/s40820-021-00676-6.
B.I. Rachiy, B.K. Ostafiychuk, I.M. Budzulyak, N.Y. Ivanichok, Specific Energy Characteristics of Nanoporous Carbon Activated by Orthophosphoric Acid, Journal of Nano- and Electronic Physics,7(4), Art. 04077 (2015).
K.-C. Lee, M.S.W. Lim, Z.-Y. Hong, S. Chong, T.J. T., G.-T. Pan, C.-M. Huang, Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors, Energies, 14, Art. 4546 (2021); https://doi.org/10.3390/en14154546.
S. Yang, K. Zhang, Converting Corncob to Activated Porous Carbon for Supercapacitor Application, Nanomaterials, 8(4), Art. 181 (2018); https://doi.org/10.3390/nano8040181.
R.Ya. Shvets, I.I. Grygorchak, A.K. Borysyuk, S.G. Shvachko, A.I. Kondyr, V.I. Baluk, A.S. Kurepa, B.I. Rachiy, New nanoporous biocarbons with iron and silicon impurities: synthesis, properties, and application to supercapacitors, Phys. Solid State, 56(10), 2021 (2014); https://doi.org/10.1134/s1063783414100266.
J. Zhou, A. Luo, Y. Zhao, Preparation and characterisation of activated carbon from waste tea by physical activation using steam, Journal of the Air & Waste Management Association, 68(12), 1269 (2018); https://doi.org/10.1080/10962247.2018.1460282.
N.Ya. Ivanichok, O.M. Ivanichok, B.I. Rachiy, P.I. Kolkovskyi, I.M. Budzulyak, V.O. Kotsyubynsky, V.M. Boychuk, L.Z. Khrushch, Effect of the carbonization temperature of plant biomass on the structure, surface condition and electrical conductive properties of carbon nanoporous material, Journal of Physical Studies 25(3), Art. 3801 (2021); https://doi.org/10.30970/jps.25.3801.
I.F. Myronyuk, V.I. Mandzyuk, V.M Sachko, R.P. Lisovskyy, B.I. Rachiy, Morphological and Electrochemical Properties of the Lactose-derived Carbon Electrode Materials, Journal of Nano- and Electronic Physics 8(4), Art. 04006 (2016); https://doi.org/10.21272/jnep.8(4(1)).04006.
C. Wang, B. Yan., J. Zheng, L. Feng, Z. Chen, Q. Zhang, T. Liao, J. Chen, S. Jiang, C. Du, S. He, Recent progress in template-assisted synthesis of porous carbons for supercapacitors, Advanced Powder Materials 1(2), Art. 100018 (2022); https://doi.org/10.1016/j.apmate.2021.11.005.
V.I. Mandzyuk, I.F. Myronyuk, V.M Sachko, I.M. Mykytyn, Template Synthesis of Mesoporous Carbon Materials for Electrochemical Capacitors, Surf. Eng. Appl. Electrochem. 56(1), 93 (2020); https://doi.org/10.3103/S1068375520010123.
W.C. Lim, C. Srinivasakannan, N. Balasubramanian, Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon, J. Anal. Appl. Pyrolysis, 88(2), 181 (2010); https://doi.org/10.1016/j.jaap.2010.04.004.
A.I. Belyakov, A.M. Brintsev, N. Khodyrevskaya, Proc. 14-th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices. Deerfield Beach, USA. 84 (2004).
H. Wang, L. Pilon,Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances, Electrochim. Acta 64, 130 (2012); (https://doi.org/10.1016/j.electacta.2011.12.118).
К.D. Pershina, К.О. Каzdobin, Impedance spectroscopy of electrolytic materials (Osvita Ukrainy, Kyiv, 2012).
E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications (John Wiley & Sons Inc., New Jersey, 2018).
B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Kluwer-Plenum, New York, 1999).
E. Lust, Encyclopedia of Interfacial Chemistry. Surface Science and Electrochemistry. Elsevier Inc. 316 (2018); https://doi.org/10.1016/B978-0-12-409547-2.13613-3.
B.P. Bahmatyuk, А.S. Кurepa, І.І. Grygorchak, Impedance spectroscopy of supercapacitors based on nanoporous activated carbon material, Journal of National University “Lvivska Politechnika” “Physical & mathematical sciences” 687, 188 (2010).
М.N. Rodnikova, S.А. Zasypkin, G.G. Маlenkov, About the mechanism of negative hydration, Reports of the Academy of Sciences, 324(2), 368 (1992).
E. Frackowiak, F. Beguin, Carbon Materials for the Electrochemical Storage of Energy in Capacitors, Carbon 39(6), 937 (2001); https://doi.org/10.1016/S0008-6223(00)00183-4.