The porous structure of activated carbon-based on waste coffee grounds
DOI:
https://doi.org/10.15330/pcss.23.3.484-490Keywords:
nanoporous carbon material, porous structure, low-temperature porometry, waste coffee groundsAbstract
Nanoporous carbon materials (NCM) are used to prepare supercapacitor (SC) electrodes. The high specific energy parameters of SC are closely related to the physical and electrochemical characteristics of NCM. NCM with a highly developed surface area and controlled pore size distribution are obtained by chemical and thermal activation of carbon containing precursors. In our work we propose a thermochemical method of obtaining NCM with a high specific surface area. NCM were obtained by thermochemical activation of potassium hydroxide waste coffee grounds (WCG).
References
Xinliang Feng, Nanocarbons for Advanced Energy Storage, V.1. (Wiley‐VCH Verlag GmbH & Co, KGaA, 2015); https://doi.org/10.1002/9783527680054 .
B.I. Rachiy, B.K. Ostafiychuk, I.M. Budzulyak, & N.Y. Ivanichok, Journal of Nano- and Electronic Physics 7(4), 04007 (2015); https://jnep.sumdu.edu.ua/en/full_article/1673 .
H. Yang, R. Yan, H. Chen, [at al.], Fuel, 86, 1781(2007); https://doi.org/10.1016/j.fuel.2006.12.013 .
S.M. Shulga, O. A. Tigunova, Y. B. Blume, Biotechnologia Acta, 6(2), 9 (2013); https://doi.org/10.15407/biotech6.02.009
R.L. Howard, E. Abotsi, E.L. Jansenvan Rensburg, S. Howard, Afr. J. Biotechnol, 2(12), 602 (2003); https://doi.org/10.5897/AJB2003.000-1115 .
J. Fermoso, O. Mašek, Journal of Analytical and Applied Pyrolysis, 130, 358 (2018); https://doi.org/10.1016/j.jaap.2017.12.007 .
M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao, M. Olazar, Fuel, 95, 305 (2012); http://dx.doi.org/10.1016/j.fuel.2011.10.008
J. Fermoso, H. Hernando, S. Jiménez-sánchez, A.A. Lappas, E. Heracleous, P. Pzarro, J.M. Coronado, D.P. Serrano, Fuel Process. Technol, 167, 567 (2017); http://dx.doi.org/10.1016/j.fuproc.2017.08.009 .
A.R. Reed, P.T. Williams, Int. J. Energy Res., 28(2), 131 (2004); https://doi.org/10.1002/er.956 .
N.Ya. Ivanichok, O.M. Ivanichok, P.I. Kolkovskyi, [at al.], Physics and Chemistry of Solid State, 23(1), 172 (2022); https://doi.org/10.15330/PCSS.23.1.172-178 .
M. Thommes, K. Kaneko, A. V. Neimark, [at al.], Pure and Applied Chemistry, (IUPAC TechnicalReport) 87(9-10), 1051 (2015); https://doi.org/10.1515/pac-2014-1117 .
X.L. Zhou. H. Zhang. L. Shao, [ et al.], Waste and Biomass Valorization, 12, 1699 (2021).
V. Kotsyubynsky, B. Rachiy, V. Boychuk, [et al.], Fullerenes, Nanotubes and Carbon Nanostructures, 30(8), 873 (2022); https://doi.org/10.1080/1536383X.2022.2033729 .
S.M. Lee, S.H. Lee, J.S. Roh, Crystals, 11(2), 153 (2021); https://doi.org/10.3390/cryst11020153 .
B. Manoj, A.G. Kunjomana, Int. J. Electrochem. Sci., 7(4), 3127 (2012); http://electrochemsci.org/papers/vol7/7043127.pdf
D.S. Kang, S.M. Lee, S.H. Lee, J.S. Roh, Carbon Lett., 27, 108 (2018); https://doi.org/10.5714/CL.2018.27.108 .