Synthesis, Structural, Electrical Transport and Energetic Characteristics of ZrNi1-хVxSn Solid Solution
DOI:
https://doi.org/10.15330/pcss.20.3.275-281Keywords:
electrical conductivity, thermopower coefficient, Fermi level.Abstract
The samples of ZrNi1-хVxSn solid solution (x = 0 – 0.10) based on the ZrNiSn half-Heusler phase (MgAgAs structure type) were synthesized by direct arc-melting with homogenous annealing at 1073 K. The electrokinetic and energy state characteristics of the ZrNi1-хVxSn semiconducting solid solution were investigated in the temperature range T = 80 - 400 K. An analysis of behavior of the electrokinetic and energetic characteristics, in particular, the motion rate of the Fermi level, ΔεF/Δx for ZrNi1-хVxSn, allows to assume about the simultaneous generation of the structural defects of donor and acceptor nature in the crystal. The additional researches are required to establish the mechanisms of donor generation.
References
J.W. Simonson, S.J. Poon, J. Phys.:Condens. Matter. 20, 255220 (2008). https://doi:10.1088/0953-8984/20/25/255220.
L.P. Romaka, Yu.V. Stadnyk, V.А. Romaka, A.M. Horyn, V.Ya. Krayovskyy, Phys. Chem. Solid State, 19(1), 21 (2018) (https://doi.org/10.15330/pcss.19.1.21-28.
L.P. Romaka, Yu.V. Stadnyk, V.А. Romaka, A.M. Horyn, P.-F. Rogl, V.Ya. Krayovskyy, Z.M. Rykavets, Phys. Chem. Solid State, 18(1), 41 (2017).
V.A. Romaka, E.K. Hlil, Ya.V. Skolozdra, P. Rogl, Yu.V. Stadnyk, L.P. Romaka, A.M. Goryn, Semicond. 43(9), 1115 (2009) (https://doi.org/10.1134/S106378260).
Yu.V. Stadnyk, V.A. Romaka, Yu.K. Gorelenko, L.P. Romaka, D. Fruchart, V.F. Chekurin, J. Alloys Compd. 400, 29 (2005) (https://doi.org/10.1016/j.jallcom.2005.03.071).
V.А. Romaka, L.P. Romaka, Yu.V. Stadnyk, A.M. Horyn, V.Ya. Krayovskyy, I.M. Romaniv, P.І. Garanyuk, Phys. Chem. Solid State, 20(1), 33 (2019) (https://doi.org/10.15330/pcss.20.1.33-39).
Yu.V. Stadnyk, V.V. Romaka, V.А. Romaka, A.M. Horyn, L.P. Romaka, V.Ya. Krayovskyy, I.M. Romaniv, Phys. Chem. Solid State, 20(2), 127 (2019) (https://doi.org/10.15330/pcss.20.2.127-132).
J. Rodriguez-Carvajal. Recent developments of the program FullProf. Commission on Powder Diffraction. IUCr Newsletter. 26, 12 (2001).
M. Schruter, H. Ebert, H. Akai, P. Entel, E. Hoffmann, G.G. Reddy, Phys. Rev. B 52, 188 (1995) (https://doi.org/10.1103/PhysRevB.52.188).
V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated electronic properties of metals (Pergamon Press, NY, 1978).
S. Babak, V. Babak, A. Zaporozhets, A. Sverdlova, Method of Statistical Spline Functions for Solving Problems of Data Approximation and Prediction of Objects State. Proceed. Second Inter. Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, April 15-19, 2019. P. 810-821. (http://ceur-ws.org/Vol-2353/paper64.pdf).
V.V. Romaka, L.P. Romaka, V.Ya. Krayovskyy, Yu.V. Stadnyk, Stannides of rare earth and transition metals Stannides of rare earths and transition metals, L’vivska Politekhnika, Lviv, 2015. [in Ukrainian].
V.А. Romaka, L.P. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, V.V. Romaka, A.M. Horyn, Thermoelectrics, 4, 44 (2016).
V. A. Romaka, V. V. Romaka, and Yu. V. Stadnyk, Intermetallic Semiconductors: Properties and Applications, L’vivska Politekhnika, Lviv, 2011. [in Ukrainian].
B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, NY, 1984).
N.F. Mott, E.A. Davis, Electron processes in non-crystalline materials (Clarendon Press, Oxford, 1979).