Vapor Permeability of Thin-Film Composite Materials Based |on Polyethylene

Authors

  • N. Domantsevich Lviv Trade and Economic Universit
  • B. Yatsyshyn National University “Lvivska Politechnika”

DOI:

https://doi.org/10.15330/pcss.20.3.291-299

Keywords:

polymers, polyethylene films, water vapor permeability, structure, aging

Abstract

The study of the vapor permeability and surface structure of polyethylene films modified with organic filler (casein) and mixed organic-mineral fillers stored under closed storage conditions have been shown. Changes in diffusion characteristics are shown depending on the type and amount of filler in long-term (up to 7 years) studies. It was established that the injection into the polyethylene matrix of fillers and additives significantly changes the structure formation with long-term aging. Water vapor permeability of polyethylene film modified by fillers increases along the subsequent aging. However, the deviation of characteristics at 7 years of storage does not exceed the value of WVTR = 0.6 mg·m-2·s-1, even taking into account the small thickness of the samples, which in most cases the long-term use of such a product is permissible. Electron microscopic studies of modified films have been carried out.

References

L.K. Massey, Permeability properties of plastics and elastomers: A guide to packaging and barrier materials (Plastics Design Library / William Andrew Publishing, New York, 2003).

J. A. Brydson, Plastics materials (Biddies Ltd, Guildford and King's Lynn., Oxford, 1999).

O. I. Aksiment'ieva, N. I. Domantsevych, B. P. Yatsyshyn, Dyfuzijni kharakterystyky tonkoplivkovykh polimernykh materialiv ta metody ikh vymiriuvannia Vydavnytstvo L'vivs'koho torhovel'no-ekonomichnoho universytetu, L'viv, 2018).

V. Siracusa, International Journal of Polymer Science, 11 (2012). https://www.scribd.com/document/348250250/PERMEATION-pdf.

M. S. McCaig, D. R. Paul, Polymer, 41, 629 (2000).

Laot C. M. Influence of the cooling rate, physical aging, and orientation (Thesis doc.phil., Blacksburg, Virginia, USA, 2001).

S. C. George, S. Thomas, Prog. Polym. Sci, 26 (6), 985 (2001) (https://doi.org/10.1016/S0079-6700(00)00036-8).

J. E. Mark (Ed.), Polymer Data Handbook (Oxford University Press, Oxford, 1999) (http://www.researchgate.net/profile/Sachin.../polymer_data_handbook.pdf.)

Y. Narysava, Prochnost' polymernykh materyalov (Khymyia, M., 1987).

I. M. Thomas, The blending and permeability of polymers for packaging applications (Thesis doc.phil. Brunel University of West London, GB, 1995) (https://bura.brunel.ac.uk/bitstream/2438/5504/1/FulltextThesis.pdf).

Z. Dai, L. Ansaloni, L. Deng, Green Energy & Environment, 1 (2), 102 (2016) (http://dx.doi.org/10.1016/j.gee.2016.08.001).

B. Tan, N. L, Thomas, J. Membr. Sci., 514, 595 (2016) (https://dspace.lboro.ac.uk/2134/21691).

G. Choudalakis, A. D. Gotsis, Curr. Opin. Colloid Interface Sci., 17, 132 (2012) (https://doi.org/10.1016/j.cocis.2012.01.004).

C. DeArmitt, R. Rothon, Particulate fillers, selection and use in polymer composites, in: Encyclopedia of polymers and composites (Springer-Verlag Heidelberg, Berlin, 2015), pp. 1-19 (https://doi.org/10.1007/978-3-642-37179-0_1-1).

C. Wolf, H. Angellier-Coussy, N. Gontard, F. Doghierib, V Guillard, J. Membr. Sci., 556, 393 (2018) (https://doi.org/10.1016/j.memsci.2018.03.085).

R. N. Rothon, Particulate fillers for polymers (Rapra Technology Limited, Shawbury, 2002).

N.I. Domantsevych., Inhibitornyj zakhyst promyslovoi produktsii: (vyd-vo LKA, L'viv, 2003).

N. Domantsevych, O. Aksimentyeva, B. Yatsyshyn, Current trends in commodity science. Packaging : Zeszyty naukowe, 186, 67 (2011).

Published

2019-10-18

How to Cite

Domantsevich, N., & Yatsyshyn, B. (2019). Vapor Permeability of Thin-Film Composite Materials Based |on Polyethylene. Physics and Chemistry of Solid State, 20(3), 291–299. https://doi.org/10.15330/pcss.20.3.291-299

Issue

Section

Scientific articles