Transport phenomena in CdTe:Cl and CdTe:Cu - calculation from the first principles
DOI:
https://doi.org/10.15330/pcss.24.1.126-133Keywords:
Transport phenomena, Crystal defects, CdTe, Ab initio calculationAbstract
In the presented article the method of determining the energy spectrum, the wave function of the charge carrier and the crystal potential in CdTe at an arbitrarily given temperature is considered. Using this approach within the framework of the supercell method the temperature dependences of the ionization energies of various types of defects caused by the introduction of chlorine and copper impurities in cadmium telluride are calculated. Also the offered method allows to define the temperature dependence of the optical and acoustic deformation potentials and as well as the dependence on the temperature the charge carrier’s scattering parameters on ionized impurities, polar optical, piezooptic and piezoacoustic phonons. Within the framework of short-range scattering models the temperature dependences of the charge carrier’s mobility and Hall factor are considered.
References
I. Sankin, D. Krasikov, Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers, Phys. Status Solidi A, 215, 1800887 (2019); https://doi.org/10.1002/pssa.201800887.
Su-Huai Wei, S. B. Zhang, Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe, Phys. Rev. B: Condens. Matter Mater. Phys., 66, 155211 (2002) ; https://doi.org/10.1103/PhysRevB.66.155211.
Jie Ma, Su-Huai Wei, T. A. Gessert, Ken K. Chin, Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe, Phys. Rev. B: Condens. Matter Mater. Phys., 83, 245207 (2011); https://doi.org/10.1103/PhysRevB.83.245207.
Ji-Hui Yang, Wan-Jian Yin, Ji.-Sang. Park, Jie Ma, Su-Huai Wei, Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond. Sci.Technol., 31, 083002 (2016); https://doi.org/10.1088/0268-1242/31/8/083002.
D. Krasikov, A. Knizhnik, B. Potapkin, S. Selezneva, T. Sommerer, First-principles-based analysis of the influence of Cu on CdTe electronic properties, Thin Solid Films 535, 322 (2013); https://doi.org/10.1016/j.tsf.2012.10.027.
W. Orellana, E. Menendez-Proupin, M. A. Flores, Energetics and electronic properties of interstitial chlorine in CdTe, Phys. Status Solidi B, 256, 1800219 (2019); https://doi.org/10.1002/pssb.201800219.
I. Sankin, D. Krasikov, Defect interactions and the role of complexes in the CdTe solar cell absorber, J. Mater. Chem. A 5, 3503 (2017); https://doi.org/10.1039/C6TA09155E.
O.P. Malyk, The local inelastic electron–polar optical phonon interaction in mercury telluride, Comput. Mater. Sci., 33/1-3, 153 (2005); https://doi.org/10.1016/j.commatsci.2004.12.052.
K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B, 85, 115317 (2012); https://doi.org /10.1103/PhysRevB.85.115317.
O. Restrepo, K. Varga, S. Pantelides, First-principles calculations of electron mobilities in silicon: phonon and Coulomb scattering, Appl. Phys. Lett., 94, 212103 (2009); https://doi.org/10.1063/1.3147189.
O.D. Restrepo, K.E. Krymowski, J. Goldberger, W. A Windl, A first principles method to simulate electron mobilities in 2D materials, New J. Phys. 16, 105009 (2014); https://doi.org/10.1088/1367-2630/16/10/105009.
X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M. Buongiorno Nardelli, K.W. Kim, Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013); https://doi.org/10.1103/PhysRevB.87.115418.
Wu. Li, Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS2, Phys. Rev. B 92, 075405 (2015); https://doi.org /10.1103/PhysRevB.92.075405.
O.P. Malyk, S.V. Syrotyuk, Local electron interaction with point defects in sphalerite zinc selenide: calculation from first principles. Journal of Electron. Mater. 47, 4212 (2018); https://doi.org/10.1007/s11664-018-6068-1.
O.P. Malyk, Prediction of the kinetic properties of sphalerite CdSexTe1−x (0.1 ≤ x ≤ 0.5) solid solution: an ab initio approach. Journal of Electron. Mater. 49, 3080 (2020); https://doi.org/10.1007/s11664-020-07982-6.
O.P. Malyk, Electron scattering on the short-range potential of the crystal lattice defects in ZnO. Can. J. Phys. 92, 1372 (2014); https://doi.org/10.1139/cjp-2013-0075.
O.P. Malyk, S.V. Syrotyuk, Heavy hole scattering on intrinsic acceptor defects in cadmium telluride: calculation from the first principles, Physics and Chemistry of Solid State, 23(1), 89 (2022); https://doi.org/10.15330/pcss.23.1.89-95.
O.P. Malyk. Calculation of the electron wave function and crystal potential in a sphalerite semiconductor at a given temperature, Journal of nano- and electronic physics. 14, 05007 (2022); https://doi.org/10.21272/jnep.14(5).05007.
G.L. Hansen, J.L. Schmit, T.N. Casselman, Energy gap versus alloy composition and temperature in Hg1−xCdxTe, J. Appl. Phys. 53, 7099 (1982); https://doi.org/10.1063/1.330018.
N.A.W. Holzwarth, A.R. Tackett, G.E. Matthews, A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions, Computer Phys. Comm., 135, 329 (2001); https://doi.org/10.1016/S0010-4655(00)00244-7.
A.R. Tackett, N.A.W. Holzwarth, G.E. Matthews, A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis, Computer Phys. Comm. 135, 348 (2001); https://doi.org/10.1016/S0010-4655(00)00241-1.
J.P. Perdew, K. Burke, M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.
C. de Boor, A Practical Guide to Splines, (Springer-Verlag, New York, 1978).
O.P. Malyk, Electron scattering in CdxHg1-xTe at high temperature, Ukr. J. Phys., 35, 1374 (1990).
S. Yamada, On the electrical and optical properties of p-type cadmium telluride crystals, J. Phys. Soc. Jpn. 15, 1940 (1960); https://doi.org/10.1143/JPSJ.15.1940.
O.P. Malyk, Nonelastic charge carrier scattering in mercury telluride. J. Alloys Compd. 371/1-2, 146 (2004); https://doi.org/10.1016/j.jallcom.2003.07.033.
N.V. Agrinskaja, M.V. Alekseenko, O. A. Matveev, On the mechanism of carrier scattering in chlorine-doped cadmium telluride crystals, Fiz. Tech. Poluprovod. 5, 1029 (1981).