Tuning the photoluminescence of CdTe quantum dots by controllable coupling to plasmonic Au nanoparticles

Authors

  • V. Dzhagan V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • O. Kapush V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • O. Isaeva V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • S. Budzulyak V.E. Lashkarev Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • O. Magda Kyiv National Economic University named after Vadym Hetman, Kyiv, Ukraine
  • P. Kogutyuk Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • L. Trishchuk Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України, Київ, Україна
  • V. Yefanov V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • M. Valakh V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • V. Yukhymchuk V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.4.720-727

Keywords:

quantum dot, semiconductor nanocrystal, CdTe, photoluminescence, LSPR, Au nanoparticles

Abstract

A controllable variation of the photoluminescence (PL) intensity of semiconductor quantum dots (QDs) via their coupling to plasmonic nanoparticles (NPs) is the potential basis for optoelectronic and sensing applications. In this work, the effect of Au NPs on the PL of colloidal CdTe QDs is investigated in solution and solid films. An PL enhancement for the QDs synthesized in water was observed in case of spectral overlap of the plasmon absorption band of and QD PL band. In case of Au NPs synthesized in dimethyl sulfoxyl the trend is to reduction of the PL intensity. For the reference samples prepared by mixing QDs not with Au NP solutions but with corresponding pure solvent, certain PL enhancement was observed and presumably attributed to reduction of self-absorption or non-radiative interparticle interaction in less concentrated QD solution. However, the contribution of this dilution-related enhancement is expected to be independent of the spectral properties of NPs and QDs. Therefore, the observed in this work different behavior of QD PL in certain combinations of QDs and NPs is attributed to interaction between electronic excitation in the QD and plasmon.

Author Biography

L. Trishchuk, Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України, Київ, Україна

PhD, senior researcher

References

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, Quantum Dots and Their Multimodal Applications: A Review, Materials (Basel), 3, 2260 (2010); https://doi.org/10.3390/ma3042260.

P. Reiss, E. Couderc, J. De Girolamo, and A. Pron, Conjugated Polymers/Semiconductor Nanocrystals Hybrid Materials - Preparation, Electrical Transport Properties and Applications, Nanoscale, 3, 446 (2011); https://doi.org/10.1039/c0nr00403k.

M. Anni, Polymer-II-VI Nanocrystals Blends : Basic Physics and Device Applications to Lasers and LEDs, Nanomaterials, 9, 1036 (2019); https://doi.org/10.3390/nano9071036.

Y. Park, B. T. Diroll, R. D. Schaller, and V. I. Klimov, Colloidal Quantum Dot Lasers, Nat. Rev. Mater., 6, 382 (2021); https://doi.org/10.1038/s41578-020-00274-9.

S. Pillai and M. A. Green, Plasmonics for Photovoltaic Applications, Sol. Energy Mater. Sol. Cells, 94, 1481 (2010); https://doi.org/10.1016/j.solmat.2010.02.046.

A. Muravitskaya, A. Rumyantseva, S. Kostcheev, V. Dzhagan, O. Stroyuk, and P.-M. Adam, Enhanced Raman Scattering of ZnO Nanocrystals in the Vicinity of Gold and Silver Nanostructured Surfaces, Opt. Express, 24, A168 (2016); https://doi.org/10.1364/OE.24.00A168.

O. A. Yeshchenko, S. V. Kondratenko, and V. V. Kozachenko, Surface Plasmon Enhanced Photoluminescence from Fullerene C 60 Film on Au Nanoparticles Array : Resonant Dependence on Excitation Frequency, J. Appl. Phys., 111, 124327 (2014); https://doi.org/10.1063/1.4731228.

A. M. Flatae, F. Tantussi, G. C. Messina, F. De Angelis, and M. Agio, Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot, J. Phys. Chem. Lett., 10, 2874 (2019); https://doi.org/10.1021/acs.jpclett.9b01083.

H. Wang, L. Xu, Y. Wu, J. Xu, Z. Ma, and K. Chen, Plasmon Resonance-Induced Photoluminescence Enhancement of CdTe/Cds Quantum Dots Thin Films, Appl. Surf. Sci., 387, 1281 (2016); https://doi.org/10.1016/j.apsusc.2016.06.092.

O. A. Yeshchenko, P. S. Khort, N. V. Kutsevol, V. M. Prokopets, O. Kapush, and V. Dzhagan, Temperature Driven Plasmon-Exciton Coupling in Thermoresponsive Dextran-Graft-PNIPAM/Au Nanoparticle/CdTe Quantum Dots Hybrid Nanosystem, Plasmonics, 16, 1137 (2021); https://doi.org/10.1007/s11468-021-01378-w.

A. Inoue, H. Sugimoto, and M. Fujii, Photoluminescence Enhancement of Silicon Quantum Dot Monolayer by Double Resonance Plasmonic Substrate, J. Phys. Chem. C, 121, 11609 (2017); https://doi.org/10.1021/acs.jpcc.7b00717.

V. I. Chegel, A. M. Lopatynskyi, V. K. Lytvyn, P. V Demydov, J. P. Mart, and R. Abargues, Sensors Localized Surface Plasmon Resonance Nanochips with Molecularly Imprinted Polymer Coating for Explosives Sensing, Semicond. Physics, Quantum Electron. Optoelectron, 23, 431 (2020); https://doi.org/10.15407/spqeo23.04.431.

I. Dmitruk, I. Blonskiy, I. Pavlov, O. Yeshchenko, A. Alexeenko, A. Dmytruk, P. Korenyuk, and V. Kadan, Surface Plasmon as a Probe of Local Field Enhancement, Plasmonics, 4, 115 (2009); https://doi.org/10.1007/s11468-009-9081-7.

M. Lunz, V. A. Gerard, Y. K. Gun, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers, Nano Lett., 3341 (2011); https://doi.org/10.1021/nl201714y.

G. I. Dovbeshko, O. M. Fesenko, Y. M. Shirshov, and V. I. Chegel, The Enhancement of Optical Processes near Rough Surface of Metals, Semicond. Physics, Quantum Electron. Optoelectron., 7, 411 (2004); https://doi.org/10.15407/spqeo7.04.411.

O. A. Yeshchenko et al., Laser-Induced Periodic Ag Surface Structure with Au Nanorods Plasmonic Nanocavity Metasurface for Strong Enhancement of Adenosine Nucleotide Label-Free Photoluminescence Imaging, ACS Omega, 5, 14030 (2020); https://doi.org/10.1021/acsomega.0c01433.

O. S. Kulakovich, D. V. Korbutyak, S. M. Kalytchuk, S. I. Budzulyak, O. A. Kapush, L. I. Trishchuk, S. V. Vaschenko, V. Stankevich, and A. Ramanenka, Influence of Conditions for Synthesis of CdTe Nanocrystals on Their Photoluminescence Properties and Plasmon Effects, J. Appl. Spectrosc., 79, 774 (2012); https://doi.org/10.1007/s10812-012-9668-1.

V. B. Llorente, V. M. Dzhagan, N. Gaponik, R. A. Iglesias, D. R. T. Zahn, and V. Lesnyak, Electrochemical Tuning of Localized Surface Plasmon Resonance in Copper Chalcogenide Nanocrystals, J. Phys. Chem., C 121, 18244 (2017); https://doi.org/10.1021/acs.jpcc.7b05334.

M. Moradi, A. Vaskin, I. Staude, J. Michael, J. Elbert, and U. S. Schubert, Photoluminescence Switching of CdSe/ZnS Quantum Dots Toward Sensing Applications Triggered by Thermoresponsive Poly (N ‑ Isopropylacrylamide) Films on Plasmonic Gold Surfaces, ACS Appl. Nano Mater., 4, 2386−2394 (2021); https://doi.org/10.1021/acsanm.0c02476.

J. Zhang, R. Badugu, and J. R. Lakowicz, Fluorescence Quenching of CdTe Nanocrystals by Bound Gold Nanoparticles in Aqueous Solution, Plasmonics, 3, 3 (2008); https://doi.org/10.1007/s11468-007-9047-6.

S. F. Wuister, F. Van Driel, and A. Meijerink, Luminescence of CdTe Nanocrystals, J. Lumin., 102–103, 327 (2003); https://doi.org/10.1016/S0022-2313(02)00520-3.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmuller, Y. P. Rakovich, and J. F. Donegan, Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art, J. Phys. Chem. C, 111, 14628 (2007); https://doi.org/10.1021/jp072463y.

O. A. Kapush, S. D. Boruk, O. S. Boruk, S. I. Budzulyak, B. N. Kulchytsky, O. G. Kosinov, and L. I. Trishchuk, Effect of the Nature of Dispersion Medium on the CdTe / TGA Nanocrystal Formation in Colloidal Solutions and Polymeric Membranes, Semicond. Phys. Quantum Electron. Optoelectron., 23, 160 (2020); https://doi.org/10.15407/spqeo23.02.160.

O. Kapush, S. I. Budzulyak, D. V. Korbutyak, N. D. Vakhnyak, S. D. Boruk, V. M. Dzhagan, A. I. Yemets, and M. Y. Valakh, Influence of the Dispersion Medium on the Properties of CdTe Micro- and Nanocrystals in a Colloidal Solution, Funct. Mater., 26, 27 (2019); https://doi.org/10.15407/fm26.01.27.

M. V Kovalenko and O. L. Stroyuk, Spectral, Optical, and Photocatalytic Characteristics of Quantum-Sized Particles of CdTe, Theor. Exp. Chem., 40, 220 (2004); https://doi.org/10.1023/B.

O. A. Kapush, L. I. Trishchuk, V. N. Tomashik, and Z. F. Tomashik, Effect of Thioglycolic Acid on the Stability and Photoluminescence Properties of Colloidal Solutions of CdTe Nanocrystals, Inorg. Mater., 50, 13 (2014); https://doi.org/10.1134/S0020168514010105.

J. Turkevich, P. C. Stevenson, and J. Hillier, A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/DF9511100055.

V. Dzhagan, O. Kapush, S. Plokhovska, A. Buziashvili, Y. Pirko, O. Yeshchenko, V. Yukhymchuk, A. Yemets, and D. R. T. Zahn, Plasmonic Colloidal Au Nanoparticles in DMSO : A Facile Synthesis and Characterisation, RSC Adv., 12, 21591 (2022); https://doi.org/10.1039/D2RA03605C.

N. Gaponik, D. V Talapin, A. L. Rogach, K. Hoppe, E. V Shevchenko, A. Kornowski, A. Eychmu, and H. Weller, Thiol-Capping of CdTe Nanocrystals : An Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B, 106, 7177 (2002); . https://doi.org/10.1021/jp025541k

O. Stroyuk, A. Raevskaya, N. Gaponik, O. Selyshchev, V. Dzhagan, S. Schulze, and D. R. T. Zahn, Origin of the Broadband Photoluminescence of Pristine and Cu+/Ag+-Doped Ultrasmall CdS and CdSe/CdS Quantum Dots, J. Phys. Chem. C, 122, 10267 (2018); https://doi.org/10.1021/acs.jpcc.8b02337.

C. Meerbach et al., Brightly Luminescent Core / Shell Nanoplatelets with Continuously Tunable Optical Properties, Adv. Opt. Mater., 1801478 (2019); https://doi.org/10.1002/adom.201801478.

A. E. Raevskaya, A. L. Stroyuk, S. Y. Kuchmiy, V. M. Dzhagan, M. Y. Valakh, and D. R. T. Zahn, Optical Study of CdS- and ZnS-Passivated CdSe Nanocrystals in Gelatin Films, J. Phys. Condens. Matter, 19, 386237 (2007); https://doi.org/10.1088/0953-8984/19/38/386237.

Q. Wen, S. V. Kershaw, S. Kalytchuk, O. Zhovtiuk, C. Reckmeier, M. I. Vasilevskiy, and A. L. Rogach, Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects, ACS Nano, 10, 4301 (2016); https://doi.org/10.1021/acsnano.5b07852.

S. A. Fischer, A. M. Crotty, S. V. Kilina, S. A. Ivanov, and S. Tretiak, Passivating Ligand and Solvent Contributions to the Electronic Properties of Semiconductor Nanocrystals, Nanoscale, 4, 904 (2012); https://doi.org/10.1039/c2nr11398h.

S. S. Lo, Y. Khan, M. Jones, and G. D. Scholes, Temperature and Solvent Dependence of CdSe/CdTe Heterostructure Nanorod Spectra, J. Chem. Phys., 131, 1 (2009); https://doi.org/10.1063/1.3212693.

S. Trotzky, J. Kolny-Olesiak, S. M. Falke, T. Hoyer, C. Lienau, W. Tuszynski, and J. Parisi, Ligand Removal from Soluble CdTe Nanocrystals Evidenced by Time-Resolved Photoluminescence Spectroscopy, J. Phys. D. Appl. Phys., 41, 102004 (2008); https://doi.org/10.1088/0022-3727/41/10/102004.

M. Toma, O. Selyshchev, Y. Havryliuk, A. Pop, and D. R. T. Zahn, Optical and Structural Characteristics of Rare-Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution, Photochem, 2, 515 (2022); https://doi.org/10.3390/photochem2030036.

B. J. Kumar and H. M. Mahesh, Concentration-Dependent Optical Properties of TGA Stabilized CdTe Quantum Dots Synthesized via the Single Injection Hydrothermal Method in the Ambient Environment, Superlattices Microstruct., 104, 118 (2017); https://doi.org/10.1016/j.spmi.2017.02.023.

R. Schneider, F. Weigert, V. Lesnyak, S. Leubner, T. Lorenz, and T. Behnke, PH and Concentration Dependence of the Optical Properties of Thiol-Capped CdTe Nanocrystals in Water and D2O, Phys.Chem.Chem.Phys., 18, 19083 (2016); https://doi.org/10.1039/c6cp03123d.

Y. Luo, Y. Hong, L. Shen, F. Wu, and X. Lin, Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations, AAPS PharmSciTech, 22, 34 (2021); https://doi.org/10.1208/s12249-020-01909-4.

K. Koczkur, S. Mourdikoudis, L. Polavarapu, S. Skrabalak, Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis, Dalt. Trans., 44, 17883 (2015); https://doi.org/10.1039/c5dt02964c.

G. Rudko, A. Kovalchuk, V. Fediv, Q. Ren, W. Chen, I. A. Buyanova, and G. Pozina, Role of the Host Polymer Matrix in Light Emission Processes in Nano-CdS/Poly Vinyl Alcohol Composite, Thin Solid Films, 543, 11 (2013); https://doi.org/10.1016/j.tsf.2013.04.035.

E. Witt, F. Witt, N. Trautwein, and D. Fenske, Synthesis of Lead Chalcogenide Nanocrystals and Study of Charge Transfer in Blends of PbSe Nanocrystals and Poly ( 3-Hexylthiophene), Phys. Chem. Chem. Phys., 14, 11706 (2012); https://doi.org/10.1039/c2cp41584d.

L. Borkovska, N. Korsunska, T. Stara, O. Gudymenko, Y. Venger, O. Stroyuk, O. Raevska, and T. Kryshtab, Enhancement of the Photoluminescence in CdSe Quantum Dot-Polyvinyl Alcohol Composite by Light Irradiation, Appl. Surf. Sci., 281, 118 (2013); https://doi.org/10.1016/j.apsusc.2012.12.146.

V. Dzhagan, O. Stroyuk, O. Raievska, O. Isaieva, O. Kapush, O. Selyshchev, V. Yukhymchuk, and M. Valakh, Photoinduced Enhancement of Photoluminescence of Colloidal II-VI Nanocrystals in Polymer Matrices, Nanomaterials, 10, 2565 (2020); https://doi.org/10.3390/nano10122565.

Downloads

Published

2022-12-19

How to Cite

Dzhagan, V., Kapush, O., Isaeva, O., Budzulyak, S., Magda, O., Kogutyuk, P., … Yukhymchuk, V. (2022). Tuning the photoluminescence of CdTe quantum dots by controllable coupling to plasmonic Au nanoparticles. Physics and Chemistry of Solid State, 23(4), 720–727. https://doi.org/10.15330/pcss.23.4.720-727

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)