Modeling of the properties of the semiconductor solid solution Lu1-xVxNiSb in the presence of magnetic ordering

Authors

  • V.V. Romaka Leibniz Institute for Solid State and Materials Research, IFW-Dresden, Dresden, Germany
  • V.A. Romaka Lviv Polytechnic National University, Lviv, Ukraine
  • Yu. Stadnyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • L. Romaka Ivan Franko National University of Lviv, Lviv, Ukraine
  • A. Horyn Ivan Franko National University of Lviv, Lviv, Ukraine
  • V. Pashkevych Lviv Polytechnic National University, Lviv, Ukraine
  • P. Haraniuk Lviv Polytechnic National University, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.3.503-508

Keywords:

magnetic ordering, Fermi level, Curie temperature

Abstract

Modeling of the thermodynamic, structural, energetic and magnetic properties of the semiconductor solid solution Lu1-xVxNiSb was carried out under the condition of the presence of a magnetic moment on the V atoms and the occurrence of spontaneous magnetization. It is shown that the change in the unit cell parameter a(x) and the mixing enthalpy ΔHmix(х) depends little on the presence or absence of spontaneous magnetization. Modeling of the distribution of the density of electronic states DOS in the presence of a magnetic moment on V atoms revealed the splitting of energy states with spins up and down while preserving the band gap εg of Lu1-xVxNiSb. The relationship between the concentration of magnetic V atoms in Lu1-xVxNiSb and the Curie temperature ТС, when spontaneous magnetization is destroyed and the substance becomes paramagnetic, is established. The solid solution semiconductor Lu1-xVxNiSb, provided spontaneous magnetization is present, can be considered as a promising magnetocaloric.

References

K. Hartjes, W. Jeitschko, Crystal structure and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln=La–Nd, Sm, Gd–Tm, Lu), J. Alloys Compd. 226, 81 (1995); https://doi.org/10.1016/0925-8388(95)01573-6.

V.A. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, L.P. Romaka, O.P. Guk, V.V. Romaka, M.M. Mykyychuk, A.M. Horyn, The latest heat-sensitive materials and temperature transducers, Lviv Polytechnic Publishing House, Lviv (2020). https://opac.lpnu.ua/bib/1131184. [in Ukrainian].

V.A. Romaka, Yu. Stadnyk, L. Romaka, P. Demchenko, A. Horyn, V. Pashkevych, P. Haranyuk, Peculiarities of structural, electrokinetic, energetic, and magnetic properties semiconductive solid solution Lu1-xVxNiSb, J. Phys. Chem. Sol. State 24, 1 (2023); https://doi.org/10.15330/pcss.24.1.

[Ya.F. Lomnytska, O.P. Pavliv, Phase equilibria in the V-Ni-Sb system, Inorganic Materials 43, 608 (2007); https://doi.org/10.1134/S0020168507060106.

P.I. Kripyakevich, V.Ya. Markiv, Crystal Structures of Ternary Compounds in the Systems Ti(V)-Fe(Co,Ni)-Sn(Sb), Dopov. Akad. Nauk Ukr. RSR, 1606 (1963). [in Ukrainian].

M. Schruter, H. Ebert, H. Akai, P. Entel, E. Hoffmann, G.G. Reddy, First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys, Phys. Rev. B, 52, 188 (1995); https://doi.org/10.1103/PhysRevB.52.188.

V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties of Metals, Pergamon Press, NY 1978.

B.I. Shklovskii and A.L. Efros, Electronic properties of doped semiconductors, Springer-Verlag, Berlin, Heidelberg (1984); https://doi.org/10.1007/978-3-662-02403-4.

N.F. Mott and E.A. Davis. Electron processes in non-crystalline materials. Clarendon Press, Oxford 1979; https://doi.org/10.1002/crat.19720070420.

V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, V.Z. Pashkevych, V.V. Romaka, A.M. Horyn, P.Yu. Demchenko, Study of structural, thermodynamic, energy, kinetic and magnetic properties of thermoelectric material Lu1-xZrxNiSb, J. Thermoelectricity 1, 32 (2021); http://jt.inst.cv.ua/jt/jt_2021_01_en.pdf.

Published

2023-09-24

How to Cite

Romaka, V., Romaka, V., Stadnyk, Y., Romaka, L., Horyn, A., Pashkevych, V., & Haraniuk, P. (2023). Modeling of the properties of the semiconductor solid solution Lu1-xVxNiSb in the presence of magnetic ordering. Physics and Chemistry of Solid State, 24(3), 503–508. https://doi.org/10.15330/pcss.24.3.503-508

Issue

Section

Scientific articles (Physics)