Phase equilibrium diagram of Y-Cu-Sb system at 870 K

Authors

  • L. Romaka Ivan Franko National University of Lviv, Lviv, Ukraine
  • Yu. Stadnyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • V.V. Romaka Institute for Solid State Research, IFW-Dresden, Dresden, Germany
  • A. Zelinskiy Ivan Franko National University of Lviv, Lviv, Ukraine
  • P. Klyzub Ivan Franko National University of Lviv, Lviv, Ukraine
  • A. Horyn Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.610-615

Keywords:

intermetallics, ternary system, phase equilibria, crystal structure

Abstract

The interaction of the components in the Y-Cu-Sb ternary system was investigated using the methods of X-ray phase analysis, microstructure, and energy-dispersive X-ray spectroscopy in the whole concentration range at 870 K. At the temperature of investigation Y-Cu-Sb system is characterized by the formation of three ternary compounds: Y3Cu22Sb9 (Dy3Cu20+xSb11-x structure type, space group F-43m, a=1.6614(3) nm), Y3Cu3Sb4 (Y3Au3Sb4 structure type, space group I-43d, а=0.95357(5) nm), YCuSb2 (HfCuSi2 structure type, space group P4/nmm, a=0.42580(1), c=0.98932(3) nm). The solubility of copper in the binary compound YSb (NaCl structure type) extends up to 8 at. %.

References

R.V. Skolozdra, P.S. Salamakha, A.L. Ganzyuk, O.I. Bodak, New intermetallic compounds R3Cu3Sb4 (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) with semiconducting properties, Inorg. Mater. 29, 26 (1993).

S. Sportouch, M.G. Kanatzidis, Th3Co3Sb4: a new room temperature magnet, J. Solid State Chem. 162, 158 (2001); https://doi.org/10.1006/jssc.2001.9206.

V. V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy, Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems, J. Solid State Chem. 239, 145 (2016); https://doi.org/10.1016/j.jssc.2016.04.029.

V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk, Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb system, J. Alloys Compd. 855, 157334 (2021); https://doi.org/10.1016/j.jallcom.2020.157334.

R. Skolozdra, M. Baran, A. Horyn, A. Szewczyk, Yu. Gorelenko, H. Szymczak, R. Szymczak, Magnetic and transport properties of R3Cu3Sb4 compounds (R=La, Ce, Pr, Nd, and Sm), Acta Phys. Pol. A 102, 429 (2002); https://doi.org/10.12693/AphysPolA.102.429.

K. Fess, W. Kaefer, Ch. Turner, K. Friemelt, Ch. Kloc, E. Bucher, Magnetic and thermoelectric properties of R3Cu3Sb4 (R=La, Ce, Gd, Er), J. Appl. Phys. 83, 2568 (1998); https://doi.org/10.1063/1.367018.

O.L. Sologub, P.S. Salamakha, Rare-earth-antimony systems in: K.A. Gschneidner, J.-C.G. Bunzli, V.K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare-Earths, 33, North-Holland, Amsterdam, 2003, pp. 35–146.

L. Zeng, H. Ning, Isothermal cross-section of the Cu–Ho–Sb phase diagram at 500 °C, J. Alloys Compd. 359, 169 (2003); https://doi.org/10.1016/S0925-8388(03)00199-3.

L.O. Fedyna, A.O. Fedorchuk, V.M. Mykhalichko, Z.M. Zhpyrka, M.F. Fedyna, Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm–Cu–Sb at 870 K, Solid St. Sci. 69, 7 (2017); https://doi.org/10.1016/j.solidstatesciences.2017.05.003.

W. Kraus, G. Nolze, POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr. 29, 301 (1996); https://doi.org/10.1107/S0021889895014920.

L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803 (2014); https://doi.org/10.1107/S1600576714001058.

T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, 378–381, 118 (2001); https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

T.B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1990).

H Okamoto. Desk Handbook: Phase Diagrams for Binary Alloys, Materials Park (OH): ASM (2000).

Y.A. Mozharivskyj, H.F. Franzen, High-temperature modification of Y5Sb3 and its ternary analogue Y5NixSb3-x, J. Alloys Compd. 319, 100 (2001); https://doi.org/10.1016/S0925-8388(00)01463-8.

O.L. Sologub, K. Hiebl, P. Rogl, H. Noel, O.I. Bodak, On the crystal structure and magnetic properties of the ternary rare earth compounds RETSb2 with RE= rare earth and T= Ni, Pd, Cu and Au, J. Alloys Compd. 210, 153 (1994); https://doi.org/10.1016/0925-8388(94)90131-7.

O.L. Fedyna, O.I. Bodak, A.O. Fedorchuk, Y.O. Tokaychuk, M.F. Fedyna, New ternary antimonides with Dy3Cu20+xSb11-x-type structure, Abstr. 9th Int. Conf. Crystal Chem. Intermet. Compd. 90 (2005).

X.X. Yang, Y.M. Lu, S.K. Zhou, S.Y. Mao, J.X. Mi, Z.Y. Man, J.T. Zhao, RCu1+xSb2 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y) phases with defect CaBe2Ge2-type structure, Mater. Sci. Forum 475/479, 861 (2005); https://doi.org/10.4028/www.scientific.net/MSF.475-479.861.

T. Mishra, I. Schellenberg, M. Eul, R. Pöttgen, Structure and properties of EuTSb (T=Cu, Pd, Ag, Pt, Au) and YbIrSb, Z. Kristallogr. Cryst. Mater. 226, 590 (2011); https://doi.org/10.1524/zkri.2011.1387.

H. Flandorfer, K. Hiebl, C. Godart, P. Rogl, A. Saccone, R. Ferro, The crystal structure and magnetic properties of YbMSb, M=Cu, Ag, Au, J. Alloys Compd. 256, 170 (1997); https://doi.org/10.1016/S0925-8388(96)03007-1.

Published

2023-11-20

How to Cite

Romaka, L., Stadnyk, Y., Romaka, V., Zelinskiy, A., Klyzub, P., & Horyn, A. (2023). Phase equilibrium diagram of Y-Cu-Sb system at 870 K. Physics and Chemistry of Solid State, 24(4), 610–615. https://doi.org/10.15330/pcss.24.4.610-615

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)

<< < 1 2 3