Exploration of Titanium-Based Fine-Particle Additive Influence on Cohesive and Adhesive Strength Enhancement in Epoxy-Polymer Composites

Authors

  • Oksana Baranovska Frantsevich Institute for Problems of Materials Science NASU, Kyiv, Ukraine
  • Gennadii Bagliuk Frantsevich Institute for Problems of Material Science NAS of Ukraine, Kyiv, Ukraine
  • Andriy Buketov Kherson State Maritime Academy, Kherson, Ukraine
  • Oleksandr Sapronov Kherson State Maritime Academy, Kherson, Ukraine
  • Dmytro Baranovsky Frantsevich Institute for Problems of Material Science NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.453-460

Keywords:

composite, polymer, powder, filler, structure, strength, adhesion, epoxy resin

Abstract

The study examines how the inclusion of a dispersed powder filler affects the physico-mechanical properties of an ultrasound-modified epoxy matrix. Varying the filler content from 5% to 60% by weight in the composite revealed an optimal concentration for enhanced mechanical properties. Introducing the filler at 5% led to maximum impact strength (W = 18.47 kJ/m2) and minimized destructive stresses during bending (σB = 51.75 MPa). At 10% filler concentration, destructive bending stresses increased significantly from σB = 48.0 MPa to σB= 74.85 MPa, with impact strength improving from W = 7.4 kJ/m2 to W = 17.42…18.47 kJ/m2. Further increasing filler content to 20–60% resulted in a slight decrease in destructive stresses while still surpassing for the filler-free epoxy matrix strength. Optimal modifier content improved adhesive characteristics, achieving a peak adhesive strength (σa = 33.4 MPa) at 20% filler, albeit with residual stresses at 0.34 MPa. Introducing the modifier at 10% increased adhesive strength to σa = 28.6 MPa, marking a 1.15-fold improvement over the filler-free epoxy matrix, while reducing residual stresses from σres = 1.4 MPa to σres = 1.0 MPa. Higher filler content (40-60%) led to decreased adhesive strength and increased residual stresses (σres = 0.62…0.69 MPa).

References

composites, Materials Research Express, 6(5), 687 (2019); https://doi.org/10.1088/2053-1591/aaff12/.

S.V. Ulegin, Yu.A. Kadykova, S.E. Artemenko, and S.A. Demidova, Basalt-filled epoxy composite materials, International Polymer Science and Technology 41(5), 57 (2014); https://doi.org/10.1177/0307174X1404100513.

A. Kasgoz, D. Akin and A. Durmus, Rheological and mechanical properties of cycloolefin copolymer/organoclay nanocomposites, Journal of Reinforced Plastics and Composites, 31, 1329 (2012); https://doi.org/10.1177/0731684412461190.

V. Beloshenko, Y. Voznyak, A. Voznyak and B. Savchenko, New approach to production of fiber reinforced polymer hybrid composites, Composites Part B: Engineering, 112(1), 22 (2017); https://doi.org/10.1016/j.compositesb.2016.12.030.

P. Mohan, A critical review. The modification, properties, and applications of epoxy resins, Polymer-Plastics Technology and Engineering 52, 107 (2012); https://doi.org/10.1080/03602559.2012.727057.

Jean-Pierre Pascault, R.J.J. Williams, Epoxy Polymers, New Materials & Innovations (Wiley-VCH: Weinheim 2010).

N.R. Paluvai, S. Mohanty, S.K. Nayak, Synthesis and Modifications of Epoxy Resins and Their Composites: A Review, Polymer-Plastics Technology and Engineering, 53, 1723 (2014); https://doi.org/10.1080/03602559.2014.919658/.

A.A. Berlin (Ed.). M.L. Kerber, V.M. Vinogradov, G.S. Golovkin et al. Polymer Composite Materials. Properties. Structure. Technologies (Profession, St. Petersburg, 2009).

K.M. Sanjay, Composites Manufacturing, Materials, Products, & Process Engineering (Taylor & Francis, Washington, DC 2002).

A.K. Srivastava and P. Mohan, Synthesis reaction and properties of modified epoxy resins, Journal of Macromolecular Science, Part C, 4, 687 (1997); https://doi.org/10.1080/15321799708009653.

H. Farzana and H. Mehdi, Review article, polymer matrix nanocomposites, processing, manufacturing, and application: An overview, Journal of Composite Materials, 40, 1511 (2006); https://doi.org/10.1177/0021998306067321.

N. Saba, M. Jawaid, Hybrid Polymer Composite Materials: Properties and Characterisation (Woodhead Publishing 2017).

Ch. Wu, Fan Xu, Hu.Wang, Hong Liu, Feng Yan and Chao Ma, Manufacturing Technologies of Polymer Composites—A Review, Polymers, 15(3), 712 (2023); https://doi.org/10.3390/polym15030712.

R. Hsissou, R. Seghiri, Z. Benzekri, et al, Polymer composite materials. A comprehensive review, Composite Structures, 262, 113640 (2021); https://doi.org/10.1016/j.compstruct.2021.113640.

Farzana Hussain, Mehdi Hojjati, Masami Okamoto, and Russell E. Gorga, Review article, polymer matrix nanocomposites, processing, manufacturing, and application: An overview, Journal of Composite Materials, 40, 1511 (2006); https://doi.org/10.1177/0021998306067321.

D. Dixon, P. Lemonine, J. Hamilton, et al., Graphene oxide–polyamide 6 nanocomposites produced via in situ polymerization, Journal of Thermoplastic Composite Materials, 28(3), 372 (2015); https://doi.org/10.1177/0892705713484749.

A.V. Buketov, G.A. Bagliuk, O.M. Sizonenko, O.O. Sapronov, S.O. Smetankin & A.S. Torpakov, Effect of Particulate Ti–Al–TiC Reinforcements on the Mechanical Properties of Epoxy Polymer Composites, Powder Metallurgy and Metal Ceramics, 61, 586 (2023); https://doi.org/10.1007/s11106-023-00347-8.

G.A. Baglyuk, O.V. Baranovska, A.V. Buketov, O.O. Sapronov, S.O. Smetankin, O.M Bykov, D.I. Baranovskyi, Physicomechanical Properties and Structure of Multicomponent Titanium-Matrix-Base Alloy Dispersion Epoxy Composites, Strength of Materials, 55, 534 (2023); https://doi.org/10.1007/s11223-023-00546-z.

A. Allaoui, S. Bai, H. M. Cheng and J.B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Composites Science and Technology, 62(15), 1993 (2003); https://doi.org/10.1016/S0266-3538(02)00129-X.

R. Potluri, P. Nallagatla, and R. Korati, Effect of Boron Carbide Particles on the properties of Kevlar49 Fiber Reinforced Polymer Composites, Materials Today: Proceedings, 18(1), 230 (2019); https://doi.org/10.1016/j.matpr.2019.06.296.

A. Kasgoz, D. Akin and A. Durmus, Rheological and mechanical properties of cycloolefin copolymer/organoclay nanocomposites, Journal of Reinforced Plastics and Composites, 31, 1329 (2012); https://doi.org/10.1177/0731684412461.

Y. Songlan, Zheng-Ming Sun, Hitoshi Hashimoto, Formation of Ti3SiC2 from Ti-Si-TiC powders by pulse discharge sintering (PDS) technique, Materials Research Innovations, 7, 225 (2003); https://doi.org/10.1007/s10019-003-0255-1.

G.A. Bagliuk, O.V. Suprun, A.A. Mamonova, The Influence of Synthesis Temperature on the Phase Composition and Structure of Ternary Compounds Produced from TiH2–Si–C Powder Mixtures, Powder Metallurgy and Metal Ceramics, 58(1-2), 1 (2019); https://doi.org/10.1007/s11106-019-00040-9.

A. Patnaik, A. Satapathy, S.S. Mahapatra, and R.R. Dash, A Comparative Study on Different Ceramic Fillers Affecting Mechanical Properties of Glass—Polyester Composites, Journal of Reinforced Plastics and Composites, 28(11), 1305 (2008); https://doi.org/10.1177/0731684407086589.

B. Turcsanyi, B. Pukanszky, F. Tudos, Composition dependence of tensile yield stress in filled polymers, Journal of Materials Science Letters, 7, 160 (1988); https://doi.org/10.1007/BF01730605.

H.-L. Dai, C. Mei, Y.-N. Rao, A novel method for prediction of tensile strength of spherical particle-filled polymer composites with strong adhesion, Polymer Engineering and Science, 57(2), 137 (2017); https://doi.org/10.1002/pen.24393.

Downloads

Published

2024-08-16

How to Cite

Baranovska, O., Bagliuk, G., Buketov, A., Sapronov, O., & Baranovsky, D. (2024). Exploration of Titanium-Based Fine-Particle Additive Influence on Cohesive and Adhesive Strength Enhancement in Epoxy-Polymer Composites. Physics and Chemistry of Solid State, 25(3), 453–460. https://doi.org/10.15330/pcss.25.3.453-460

Issue

Section

Scientific articles (Technology)