Sulfidation of Zinc oxide by interaction with Antimony sulfide
DOI:
https://doi.org/10.15330/pcss.25.2.399-405Keywords:
Zinc oxide, Antimony sulfide, acid-base interaction, sulfidationAbstract
The mechanism of interaction between ZnO and Sb2S3 in the temperature range of 500-700°С was studied. The methods of differential thermal analysis, X-ray diffraction, diffuse reflectance spectroscopy and IR transmission spectroscopy, as well as thermodynamic calculations established the exchangeable acid-base reaction mechanism with the removal of the most volatile of the products – Sb2O3. The final and only product of interaction in the system is ZnS of cubic modification (sphalerite) without phase impurities. Condensate mainly contains Antimony oxides of various compositions. In the same way, it is possible to remove oxygen-containing impurities (mainly ZnO) from zinc sulfide obtained by the method of self-propagating high-temperature synthesis.
References
N.K. Morozova, V.A. Kuznetsov, Zinc sulfide. Preparation and optical properties (Nauka, Moscow,1987); https://scholar.google.com/scholar_lookup?&title=Sul%27fid%20tsinka&publication_year=1987&author=Morozova%2CN.K.&author=Kuznetsov%2CV.A.
M.A. Okatov, E.A. Antonov, A. Baigozhin et al. Handbook of optical technologist. 2nd ed., revised and additional. (Politekhnika, St. Petersburg, 2004);
P. Klocek, Handbook of infrared optical materials (Marcel Dekker Inc., New York, Basel, Hong Kong, 1991); https://doi.org/10.1201/9781315213996.
Binnewies, E. Milke, Thermochemical data of elements and compounds. Second, revised and extended edition. (Wiley-VCH Verlag GmbH, Weinheim, 2002). http://dx.doi.org/10.1002/9783527618347
G.A. Abilsiitov, V.S. Golubev, V.G. Gontar et al. Technological lasers: Handbook, Vol. 2, Iss. 2. (Mashinostroenie, Moscow, 1991);
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=9101119171737821344.
H.J. Eichler, J. Eichler, O. Lux, Lasers. Basics, advances and applications (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-99895-4.
F. Träger, Springer Handbook of lasers and optics. 2nd ed. (Springer, Dordrecht, Heidelberg, London, New York, 2012). https://doi.org/10.1007/978-3-642-19409-2.
Pat. № 42231 Ukraine MPK G02B 5/28. Material for interference coatings / V.F. Zinchenko, I.R. Magunov, G.I. Kocherba, V.P. Sobol, O.V. Mozkova, B.A. Gorstein; Publ. 25.06.09. Bul. 12, 4 p. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=133803.
V.F. Zinchenko, V.P. Sobol, G.I. Kocherba, E.V. Timukhin. Optical and operational properties of thin film systems of interference optics (review), Physics and chemistry of solid state, 8 (3), 441 (2007); http://page.if.ua/uploads/pcss/vol8/anote0803.htm#ep1.
V.F. Zinchenko, N.O. Chivireva, G.I. Kocherba, V.Ya. Markiv, N.M Belyavina. Influence of Ln2S3 (Ln – Gd, Dy) dopant on the crystal structure and optical properties on zinc sulfide, Chemistry of metals and alloys, 3(3/4), 75 (2010); http://publications.lnu.edu.ua/chemetal/ejournal7/CMA0120.pdf.
S.V. Kozytskyi, V.P. Pisarsky, D.D. Polishchuk, I.S. Chaus, N.M. Kompanichenko, V.G. Andreychenko. Chemical composition and some properties of zinc sulfide synthesized in a combustion wave. Inorganic materials, 26(12), 2472 (1990); https://scholar.google.com/scholar_lookup?title=Chemical-composition+and+some+properties+of+zinc-sulfide+synthesized+in+a+combustion+wave&author=Kozitskii,+S.V.&author=Pisarskii,+V.P.&author=Polishchuk,+D.D.&author=Chaus,+I.S.&author=Kompanichenko,+N.M.&author=Andreichenko,+V.G.&publication_year=1990&journal=Inorg.+Mater.&volume=26&pages=2126%E2%80%932129.
J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic chemistry: principles of structure and reactivity. 4th ed. (HarperCollins College Publishers, New York, 1993);
V.F. Zinchenko, V.V. Menchuk, V.P. Antonovych, E.V. Tymukhin, Acid-base properties of inorganic compounds: monograph (I.I. Mechnikov Odessa National University, Odessa, 2016).
A.I. Efimov, L.P. Belorukova, I.V. Vasylkova, V.P. Chechev, Properties of inorganic compounds. Handbook. (Khymyia, Leningrad, 1983);
D.L. Perry, Handbook of inorganic compounds. 2nd ed. (CRC Press, Boca Raton, 2011); https://doi.org/10.1201/b10908
M. Haj Lakhdar, T. Larbi, B. Ouni, M. Amlouk, Optical and structural investigations on Sb2S2O new kermesite alloy for optoelectronic applications. Journal of Alloys and Compounds, 579, 198 (2013); https://doi.org/10.1016/j.jallcom.2013.06.052
M. Riviere, J.L. Fourquet, J. Grins, M. Nygren, The cubic pyrochlores H2xSb2xW2−2xO6·nH2O; structural, thermal and electrical properties. Materials research bulletin, 23 (7), 965 (1988); https://doi.org/10.1016/0025-5408(88)90051-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 V.F. Zinchenko, I.R. Magunov, G.V. Volchak, O.S. Mazur, O.H. Ieriomin, S.V. Kuleshov, P.G. Doha, A.V. Babenko
This work is licensed under a Creative Commons Attribution 3.0 Unported License.