Ferromagnetic property in Transition Metal (Mn, Fe, Ni)-Doped SnO2 for Spintronic Applications: A Review of Computational and Experimental Studies

Authors

  • Mandakini Baral School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
  • Padmaja Patnaik School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
  • Santanu Kumar Nayak School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
  • Dipan Kumar Das School of Applied Sciences, Centurion University of Technology and Management, Odisha, India

DOI:

https://doi.org/10.15330/pcss.25.3.639-649

Keywords:

Spintronic, DMS, RTFM, TM doped, DFT, GGA+U, GGA, PBE, LSDA, LSDA-SIC, SOL-GEL method, XRD

Abstract

The development of room temperature ferromagnetic property (RTFM) in TM doped SnO2 has potential application in the field of spintronic, recently attracted attention. This material exhibits exceptional chemical stability, demonstrates N-type behavior with a high carrier density, and remarkably displays long-range ferromagnetic properties. However, the mechanism behind this ferromagnetic property (FM) is still not fully understood. Numerous surveys of the literature have indicated that factors such as the presence of oxygen vacancies, defects, type and concentration of dopants, temperature, and methods used for sample preparation have a notable impact on the performance of FM.  Here we reviewed the FM mechanism which is noticed in Iron, Nickel, Manganese doped Tin dioxide material both experimental and computational method.

References

M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, Bandgap engineering by tuning particle size and crystallinity of nanocrystalline composite thin films, Applied Physics Letters, 93(23), 231909 (2008); https://doi.org/10.1063/1.3042163.

M. Batzill, U. Diebold. The surface and materials science of Tin dioxide, Progress in Surface Science, 79(2-4),47-154(2005); https://doi.org/10.1016/j.progsurf.2005.09.002.

B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, H. D. Sun, J. Fine structure of ultraviolet photoluminescence of tin oxide nanowires, The Journal of Physical Chemistry C, 114 (8), 3407-3410 (2010); https://doi.org/10.1021/jp9104294.

A. Sharma, M. Varshney, S. Kumar, K. D. Verma, R. Kumar, Magnetic Properties of Fe and Ni Doped SnO2 Nanoparticles, Sage Journals; 1(1), 24-28, (2011); https://doi.org/10.5772/50948.

B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, H. D. Sun, J. Fine structure of ultraviolet photoluminescence of tin oxide nanowires, The Journal of Physical Chemistry C,114 (8), 3407-3410 (2010); https://doi.org/10.1021/jp9104294.

S. Gurakar, T. Serin, N. Serin, Electrical And Microstructural Properties Of (Cu, Al, In)-doped SnO2 Films Deposited By Spray Pyrolysis, Advanced Materials Letters, 5(6), 309-314 (2014) ; https://doi.org/10.5185/amlett.2014.amwc.1016.

C. Korber, P. Agoston, A. Klein, Sens, Surface and bulk properties of sputter deposited undoped and Sb-doped SnO2 thin films, Sensors and Actuators B: Chemical, B 139(2), 665-672 (2009); https://doi.org/10.1016/j.snb.2009.03.067.

F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, D. R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method, Journal of Physical Chemistry B, 108 (24), 8119-8123 (2004); https://doi.org/10.1021/jp036741e.

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-Type Electrical Conduction in Transparent Thin Films of CuAlO2, Nature (London) 389, 939 -942 (1997); http://dx.doi.org/10.1038/40087.

B. G. Lewis, D. C. Paine, Applications and Processing of Transparent Conducting Oxides, MRS Bulletin, 25, 22-27 (2000). http://dx.doi.org/10.1557/mrs2000.147.

S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO (2-delta), Phys Rev Lett. 91(7):077205(2003); https://doi.org/10.1103/PhysRevLett.91.077205.

C. M. Liu, L. M. Fang, X. T. Zu, W. L. Zhou, The magnetism and photoluminescence of nickel-doped SnO2 nano-powders, Physica Scripta, 80 (6), 065703 (2009); https://doi.org/10.1088/0031-8949/80/06/065703.

U. Diebold, J. Lehman, T. Mahmoud, M. Kuhn, G. Leonardelli, W. Hebenstreit, M. Schmid, P. Varga, Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study, Surface Science, 411, 137-153 (1998); https://api.semanticscholar.org/CorpusID:93289427.

G.A. Prinz, Magnetoelectronics, Science, 282(5394), 1660-1663 (1998); https://doi.org/10.1126/science.282.5394.1660.

D. D. Awschalom, J.M. Kikkawa, Electron Spin and Optical Coherence in Semiconductors, Physics Today, 52 (6), 33-38 (1999); https://doi.org/10.1063/1.882695.

W. Prellier, A. Fouchet, B. Mercey, Oxide-diluted magnetic semiconductors: A review of the experimental status, Journal of Physics: Condensed Matter 15(37):1583-1601 (2003); https://doi.org/10.1088/0953-8984/15/37/R01.

S. Picozzi, Magnetic semiconductors: Engineering ferromagnetism, Nature Materials 3(6):349-350 (2004); https://doi.org/10.1038/nmat1137.

S. Bhuvana, H. B. Ramalingam, G. Thilakavathi, K.Vadivel. Structural, optical and magnetic properties of (Ni-Mn) co-doped tin oxide nanoparticles, Materials Technology, 32(5), 305-309 (2017); https://doi.org/10.1080/10667857.2016.1215088.

C. V. Komen, A. Thurber, K. M. Reddy, J. Hays, A. Punnoose, Structure-Magnetic Property Relationship in Transition Metal (M=V, Cr, Mn, Fe, Co, Ni) Doped SnO2 Nanoparticles, Journal of Applied Physics. 103(7), 07D141-1 - 07D141-3 (2008). http://dx.doi.org/10.1063/1.2836797.

N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Ferromagnetism in transition-metal-doped TiO2 thin films, Physical Review B, 70(19), 195204 (2004); https://doi.org/10.1103/PhysRevB.70.195204.

N.H. Hong, J Sakai, NT Huong, N Poirot, A Ruyter, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films, Physical Review B, 72(4), 045336 (2005); https://doi.org/10.1103/PhysRevB.72.045336.

D.A. Seghier, HP Gislason, On the oxygen vacancy in Co-doped ZnO thin films, Physica B Condensed Matter 404(23):4800-4802(2009); https://doi.org/10.1016/j.physb.2009.08.152.

L.S. Vlasenko, Magnetic Resonance Studies of Intrinsic Defects in ZnO: Oxygen Vacancy, Applied Magnetic Resonance, 39(1-2),103-111(2010); https://doi.org/10.1007/s00723-010-0140-1.

K Sato, H. K. Yoshida, Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors, Japanese Journal of Applied Physics, 39(6B):L555(2000); https://doi.org/10.1143/JJAP.39.L555.

H. Weng, X. Yang, J. Dong, H. Mizuseki, M. Kawasaki, Y Kawazoe, Electronic structure and optical properties of the Co-doped anatase TiO2 studied from first principles, Physical Review B, 69(12):125219 (2004); https://doi.org/10.1103/PhysRevB.69.125219.

G Rahman, V.M. García-suárez, SC Hong. Vacancy-induced magnetism in SnO2: A density functional study, Physical Review B: Condensed Matter. 78(18), 184404 (2008); https://doi.org/10.1103/PhysRevB.78.184404.

C.B. Fitzgerald, M Venkatesan, LS Dorneles, R Gunning, P Stamenov, JMD Coey. Magnetism in dilute magnetic oxide thin films based on SnO2, Physical Review B.74(11), 115307(2006); https://doi.org/10.1103/PhysRevB.74.115307.

S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2, Physical Review Letters.91(7), 077205 (2003); https://doi.org/10.1103/PhysRevLett.91.077205.

JMD Coey, AP Douvalis, CB Fitzgerald, M Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Applied Physics Letters;84(8),1332-1334 (2004) ; https://doi.org/10.1063/1.1650041.

A. Punnoose, J. Hays, A. Thurber, M. H. Engelhard, R. K. Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping, Physical Review B. 72, 054402 (2005); https://doi.org/10.1103/PhysRevB.72.054402.

K. Nomura, Magnetic Properties and Oxygen Defects of Dilute Metal Doped Tin Oxide Based Semiconductor, Croatica Chemica Acta, 88(4), 579-590(2016); https://doi.org/10.5562/cca2784.

P. Hohenherg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev, 136(3B), B864-B871(1964); https://doi.org/10.1103/PhysRev.136.B864.

J. M. Soler, E. Artacho, J. D. Gale, A. Garc´ıa, J. Junquera, P. Ordej´on and D. S´anchez-Portal, The SIESTA Method for ab Initio Order-N Materials Simulation, Journal of Physics: Condensed Matter, 14(11), 2745-2779(2002), http://dx.doi.org/10.1088/0953-8984/14/11/302.

D. S´anchez-Portal, P. Ordej´on, E. Artacho and J. M. Soler, Density-Functional Method for Very Large Systems with LCAO Basis Sets, International Journal of Quantum Chemistry, 65(5), 453-461 (1997). https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V.

P. Ordej´on, Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA, Phys. Status Solidi, 217(1), 335-336 (2000); https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<335::AID-PSSB335>3.0.CO;2-Z.

X. L. Wang, Z. X. Dai and Z. Zeng, Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co), Journal of Physics: Condensed Matter, 20(4), 045214 (2008); https://doi.org/10.1088/0953-8984/20/04/045214.

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 45(7), 566(1980); https://doi.org/10.1103/PhysRevLett.45.566.

A. F. Lamrani,M. Belaiche, A. Benyoussef, A. E. Kenz,E.H. Saidi, First-principles study of electronic structure and magnetic properties of doped SnO2 (rutile) with single and double impurities, Journal of Magnetism & Magnetic Materials, 323(23),2982-2986 (2011); https://doi.org/10.1016/j.jmmm.2011.06.021.

Y. Zhang, W. Yang, 890. Comment on “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett. 80(4), 890 (1998); https://doi.org/10.1103/PhysRevLett.80.890.

U. von Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case, Journal of Physics C: Solid State Physics, 5(13),1629-1642 (1972); https://doi.org/10.1088/0022-3719/5/13/012.

E. Salmani, A. Laghrissi, R. Lamouri1, M. Rouchdi, M. Dehmani, H. Ez-Zahraouy, N. Hassanain, A. Mzerd, A. Benyoussef, Theoretical study of electronic, magnetic and optical properties of TM (V, Cr, Mn and Fe) doped SnO2 ab-initio and Monte Carlo simulation, Optical Quantum Electronics, 50(85), (2018); https://doi.org/10.1007/s11082-018-1355-x.

M. Toyoda, H. Akai, K. Sato, Y. H. Katayama, Electronic structures of (Zn, TM)O (TM: V, Cr, Mn, Fe, Co, and Ni) in the self-interaction-corrected calculations, Physica B: Condensed Matter, 376–377, 647-650(2006), https://doi.org/10.1016/j.physb.2005.12.163.

S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, 58(8), 1200–1211 (1980); https://doi.org/10.1139/p80-159.

S. Roy, H. Luitel, D. Sanyal, Magnetic properties of transition metal doped SnO2: A detailed theoretical study, Computational Condensed Matter 21, e00393 ( 2019); https://doi.org/10.1016/j.cocom.2019.e00393.

G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558-561(1993); https://doi.org/10.1103/PhysRevB.47.558.

G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 – 14271 (1994); https://doi.org/10.1103/PhysRevB.49.14251.

G.Kresse, J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6(1), 15-50 (1996), https://doi.org/10.1016/0927-0256(96)00008-0.

G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(6), 11169 -11186 (1996), https://doi.org/10.1103/PhysRevB.54.11169.

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (18), 3865-3868 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12), 5188-5192 (1976); https://doi.org/10.1103/PhysRevB.13.5188.

P.M. Lee, Y.S. Liu, L. Villamagua, A. Stashans, M. Carini, C.Y. Liu, Experimental Observation and Computer Simulation of Al/Sn Substitution in p-Type Aluminum Nitride-Doped Tin Oxide Thin Film; The Journal of Physical Chemistry C 120(8), 4211-4218(2016); https://doi.org/10.1021/acs.jpcc.5b10791.

L. Lin, P. Wang, J. Huang, W. Yu, H. Tao, L. Zhu & Z. Zhang, Investigation on Electronic Structures and Magnetic Properties of (Mn, Ga) Co-doped SnO2, Journal of Superconductivity & Novel Magnetism, 32(11), 3601-3607 (2019); https://doi.org/10.1007/s10948-019-5130-4.

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study; International Journal of Quantum Chem. 77(5), 895–910 (2015) https://doi.org/10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C.

K. C. Zhang, Y. F. Li, Y. Liu, F. Chi, Density-functional study on the ferromagnetism of Mn-doped SnO2, J. Appl. Phys. 114(13), 133707 (2013); https://doi.org/10.1063/1.4824368.

W. Akbar, I. Elahi, S. Nazir, Development of ferromagnetism and formation energetics in 3d TM-doped SnO2: GGA and GGA + U calculations, Journal of Magnetism and Magnetic Materials, 511,166948 (2020); https://doi.org/10.1016/j.jmmm.2020.166948.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2K, an Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Technical University of Vienna, Vienna, 2001.

H. Kimura, T.Fukumura, M. Kawasaki, K.Inaba,T. Hasegawa,H. Koinuma, Rutile-Type Oxide-Diluted Magnetic Semiconductor: Mn-Doped SnO2, Applied Physics Letters., 80(1), 94–96 (2002); https://doi.org/10.1063/1.1430856.

NH. Hong, N.Poirot, J.Saka,M. Sno, Ferromagnetism observed in pristine SnO2 thin films, Physical Review B, Condensed Matter, 77(3), 033205(2008), https://doi.org/10.1103/PhysRevB.77.033205.

SA.Ahmed, Room-temperature ferromagnetism in pure and Mn doped SnO2 powders, Solid State Communications, 150(43–44), 2190-2193 (2010); https://doi.org/10.1016/j.ssc.2010.08.029.

CB.Fitzgerald, M.Venkatesan,LS. Dorneles, R.Gunning,P. Stamenov, JMD Coey, Magnetism in dilute magnetic oxide thin films based on SnO2, Physical review B 74(1-10), 115307 (2006); https://api.semanticscholar.org/CorpusID:55823541.

Z.M. Tian, S.L. Yuan, J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method, Journal of Alloys and Compounds, 466(1–2),26-30 (2008); https://doi.org/10.1016/j.jallcom.2007.11.054.

Y. Xiao, S. Ge, L. Xi, Y. Zuo, X. Zhou, B. Zhang, L. Zhang, C. Li, X. Han, Z. Wen, Room temperature ferromagnetism of Mn-doped SnO2 thin films fabricated by sol–gel method, Applied Surface Science, 254(22), 7459-7463 (2008); https://doi.org/10.1016/j.apsusc.2008.06.026.

S.B. Ogale,R.J. Choudhary,J.P. Buban,S.E. Lofland, S.R.Shinde,S.N. Kale,V.N. Kulkarni,J. Higgins, C.Lanci,J.R.Simpson,N.D. Browning,S. D. Sarma, H.D.Drew, R.L.Greene,T.Venkatesan, High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2−, Phys. Rev. Lett. 91(7), 077205( 2003); https://doi.org/10.1103/PhysRevLett.91.077205.

J.M.D. Coey, A.P.Douvails, C.B.Fitzgerald,M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.

A. Punnoose, J. Hays, A.Thurber, M.H. Engelhard,R.K., Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping, Phys. Rev. B, 72(5), 054402(2005); https://doi.org/10.1103/PhysRevB.72.054402.

A. M. M. Navarro, C. E. R.Torres, A. F. Cabrera, M. Weissmann, K. Nomura,L. A. Errico, Ab Initio Study of the Ferromagnetic Response, Local Structure, and Hyperfine Properties of Fe-Doped SnO2, The Journal of Physical Chemistry C, 119(10), 5596−5603(2015); https://doi.org/10.1021/jp512521q.

A. Stashans, A. Chamba, A quantum-chemical approach to Ni and Fe codoping in SnO2, Journal of Theoretical and Computational Chemistry, 15(2), 1650016(2016); https://doi.org/10.1142/S0219633616500164.

P. Chetri, B.Choudhury, A.Choudhury, Room temperature ferromagnetism in SnO2 nanoparticles: an experimental and density functional study, Journal of Materials Chemistry C 2, 9294-9302 (2014); https://doi.org/10.1039/C4TC01070A.

G. Rahman, V.M.G.S.Arez,S.C. Hong, Vacancy-induced magnetism in SnO2: A density functional study, Phys. Rev. B 78(18), 184404 (2008); https://doi.org/10.1103/PhysRevB.78.184404.

J.M.D.Coey,A.P. Douvalis.,C.B. Fitzgerald,M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.

Y.T. Fu, N. Sun, L.Feng, S.Wen,Y.K. An,J.W.Liu, Local structure and magnetic properties of Fe-doped SnO2 films, Journal of Alloys and Compounds, 698, 863-867(2017); https://doi.org/10.1016/j.jallcom.2016.12.297.

Y. Gao1, Q. Y. Hou, Q. L. Liu, Effect of Fe Doping and Point Defects (VO and VSn) on the Magnetic Properties of SnO2, Journal of Superconductivity and Novel Magnetism,32, 2877–2884(2019); https://doi.org/10.1007/s10948-019-5053-0.

J.M.D.Coey, A.P. Douvalis., C.B. Fitzgerald, M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.

Y. Gao, Q. Hou, Q. Liu, First-principles study on the electronic structures and magneto-optical properties of Fe2+/3+ doped SnO2, Solid State Communications, 305, 113764 (2020); https://doi.org/10.1016/j.ssc.2019.113764.

N.H. Hong, J.Sakai,N.T. Huong,N. Poirot,A. Ruyter, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films, Phys. Rev. B 72(4), 045336 (2005); https://doi.org/10.1103/PhysRevB.72.045336.

K. Nomura, C.A.Barrero, J. Sakuma, M. Takeda, Room-temperature ferromagnetism of sol-gel-synthesized powders, Phys. Rev. B 75(18), 184411(2007), https://doi.org/10.1103/PhysRevB.75.184411.

C.E. Rodrı,L. Errico,F. Golmar, A.M.M.Navarro, A.F.Cabrera, The role of the dopant in the magnetism of Fe-doped SnO2 films, Journal of Magnetism and Magnetic Materials, 316(2), 219-222(2007); https://doi.org/10.1016/j.jmmm.2007.02.094.

A. Sharma, M.Varshney, S.Kumar,K.D.Verma, R. Kumar, Magnetic Properties of Fe and Ni Doped SnO2 Nanoparticles, Nanomaterials and Nanotechnology, 1(1) (2011); https://doi.org/10.5772/50948.

K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol-gel method, Journal of Applied Physics, 110(8), 083901 (2011); https://doi.org/10.1063/1.3651468.

Y. Fu, N.Sun, L.Feng,S. Wen, Y.An,J. Liu, Local structure and magnetic properties of Fe-doped SnO2 films, Journal of Alloys and Compounds, 698, 863-867(2017); https://doi.org/10.1016/j.jallcom.2016.12.297.

J.M.D. Coey, A.P. Douvalis., C.B. Fitzgerald, M.Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett. 84(8), 1332–1334 (2004); https://doi.org/10.1063/1.1650041.

S. Sambasivam, B.Chun, J.G. Lin, Intrinsic magnetism in Fe doped SnO2 nanoparticles, Journal of Solid State Chemistry, 184(1), 199-203 (2011); https://doi.org/10.1016/j.jssc.2010.11.010.

R. Adhikari, A.K. Das, D.Karmakar, Structure and magnetism of Fe-doped SnO2 nanoparticles, Phys. Rev. B 78(2-1), 024404(2008); https://doi.org/10.1103/PhysRevB.78.024404.

A. Punnoose,J. Hays,A.Thurber,M.E.Engelhard,K. Ravi, Development of high-temperature ferromagnetism in SnO2 and para-magnetism in SnO2 by Fe doping, Phys. Rev. B 72(5), 054402 (2005); https://doi.org/10.1103/PhysRevB.72.054402.

G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169(1996); https://doi.org/10.1103/PhysRevB.54.11169.

A. Breuer,X.C.Wang, M.R.Chebyshev, Filtering for SCF iteration, with applications in real-space DFT, Journal of Computational Physics, 374, 27-46(2018), https://doi.org/10.1016/j.jcp.2017.12.007.

C.Temperton, A new set of minimum-add small-n rotated DFT modules, Journal of Computational Physics, 75(1),190-198(1988), https://doi.org/10.1016/0021-9991(88)90106-4.

H. Wang, Y. Yan, X. Du, X. Liu, K. Li, H. Jin, Origin of ferromagnetism in Ni-doped SnO2⁠: First-principles calculation, Journal of Applied Physics 107(10), 103923 (2010); https://doi.org/10.1063/1.3428473.

X.L. Wang, Z.X. Dai, Z. Zeng, Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co), Journal of Physics: Condensed Matter, 20(4), (2008); https://doi.org/10.1088/0953-8984/20/04/045214.

FH Aragón, JAH Coaquira, P Hidalgo, SLM Brito, D Gouvêa, RHR Castro. Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles, Journal of Physics: Condensed Matter, 22(49), 496003(2010); https://doi.org/10.1088/0953-8984/22/49/496003.

J. Zhang,Q. Yun,Q. Wang, Room Temperature Ferromagnetism of Ni-doped SnO2 System, Modern Applied Science, 4(11), 124-130(2010); https://doi.org/10.5539/mas.v4n11p124.

T. Ali, Enhanced room temperature ferromagnetism in Ni doped SnO2 nanoparticles: A comprehensive study, Journal of Applied Physics, 122(8), 083906 (2017); https://doi.org/10.1063/1.4999830.

M.H.Abdi, N.B. Ibrahim, H.Baqiah, S.A.Halim, Structural, electrical, and magnetic characterization of nickel-doped tin oxide film by a sol–gel method, Scientia Iranica 21(6), 2459-2467 (2014); https://scientiairanica.sharif.edu/article_3636.html.

Downloads

Published

2024-09-23

How to Cite

Baral, M., Patnaik, P., Nayak, S. . K., & Das, D. K. (2024). Ferromagnetic property in Transition Metal (Mn, Fe, Ni)-Doped SnO2 for Spintronic Applications: A Review of Computational and Experimental Studies. Physics and Chemistry of Solid State, 25(3), 639–649. https://doi.org/10.15330/pcss.25.3.639-649

Issue

Section

Review