Optimal H2O2 concentration in advanced oxidation over titanium dioxide photocatalyst

Authors

  • Nazarii Danyliuk Vasyl Stefanyk Precarpathian National University
  • Ivan Mironyuk Vasyl Stefanyk Precarpathian National University
  • Tetiana Tatarchuk Vasyl Stefanyk Precarpathian National University
  • Alexander Shyichuk Vasyl Stefanyk Precarpathian National University

DOI:

https://doi.org/10.15330/pcss.22.1.73-79

Keywords:

photocatalyst, titania, hydroxyl radicals, Rhodamine B, wastewater remediation

Abstract

The oxidative degradation of Rhodamine B dye under ultraviolet irradiation was studied. The degradation rate was measured with using of smartphone camera. Photocatalytic degradation of the Rhodamine B dye over the P25-TiO2 catalyst has been found to accelerate substantially in the presence of hydrogen peroxide. The relationship between the photocatalytic degradation rate and H2O2 concentration has been studied. The optimal concentration of H2O2 has been found to in the range of 10-25 mM. The proposed mixture of P25 photocatalyst and H2O2 oxidizer can be used to remove organic pollutions from industrial waste water.

References

E. Pino, C. Calderón, F. Herrera, G. Cifuentes, G. Arteaga, Front. Chem. 8, 1 (2020) (https://doi.org/10.3389/fchem.2020.00365).

S. Horikoshi, N. Serpone, Catal. Today. 340, 334 (2020) (https://doi.org/https://doi.org/10.1016/j.cattod.2018.10.020).

N. Danyliuk, J. Tomaszewska, T. Tatarchuk, J. Mol. Liq. 309, (2020). (https://doi.org/10.1016/j.molliq.2020.113077).

D. Zhu, Q. Zhou, Environ. Nanotechnology, Monit. Manag. 12, 100255 (2019) (https://doi.org/10.1016/j.enmm.2019.100255).

R. Katal, S. Masudy-Panah, M. Tanhaei, M.H.D.A. Farahani, H. Jiangyong, Chem. Eng. J. 384, 123384 (2020) (https://doi.org/10.1016/j.cej.2019.123384).

Z. Shayegan, C.S. Lee, F. Haghighat, J. Environ. Chem. Eng. 7, 103390 (2019) (https://doi.org/10.1016/j.jece.2019.103390).

R. Aswini, S. Murugesan, K. Kannan, Int. J. Environ. Anal. Chem. 00, 1 (2020) (https://doi.org/10.1080/03067319.2020.1718668).

K. Karthik, S. Vijayalakshmi, A. Phuruangrat, V. Revathi, U. Verma, J. Clust. Sci. 30, 965 (2019) (https://doi.org/10.1007/s10876-019-01556-1).

R. Gupta, J. Modak, ChemCatChem. 12 2148 (2020) (https://doi.org/10.1002/cctc.201901831).

X. Zeng, Y. Liu, Y. Xia, M.H. Uddin, D. Xia, D.T. McCarthy, A. Deletic, J. Yu, X. Zhang, Appl. Catal. B Environ. 274 119095 (2020) (https://doi.org/10.1016/j.apcatb.2020.119095).

Y. Deng, Z. Li, R. Tang, K. Ouyang, C. Liao, Y. Fang, C. Ding, L. Yang, L. Su, D. Gong, Environ. Sci. Nano. 7 702 (2020) (https://doi.org/10.1039/c9en01318k).

G. Palani, K. Kannan, D. Radhika, P. Vijayakumar, K. Pakiyaraj, Phys. Chem. Solid State. 21, 571 (2020) (https://doi.org/10.15330/pcss.21.4.571-583).

L. Wang, Q. Wang, F. Ren, Y. Wang, Appl. Surf. Sci. 493, 926 (2019) (https://doi.org/10.1016/j.apsusc.2019.07.032).

M. Feilizadeh, F. Attar, N. Mahinpey, Can. J. Chem. Eng. 97, 2009 (2019) (https://doi.org/10.1002/cjce.23455).

K. Sahel, L. Elsellami, I. Mirali, F. Dappozze, M. Bouhent, C. Guillard, Appl. Catal. B Environ. 188, 106 (2016) (https://doi.org/10.1016/j.apcatb.2015.12.044).

M. Buchalska, M. Kobielusz, A. Matuszek, M. Pacia, S. Wojtyła, W. Macyk, ACS Catal. 5, 7424 (2015) (https://doi.org/10.1021/acscatal.5b01562).

M. Kobielusz, K. Pilarczyk, E. Świętek, K. Szaciłowski, W. Macyk, Catal. Today. 309, 35 (2018) (https://doi.org/https://doi.org/10.1016/j.cattod.2017.11.013).

M. Oszajca, M. Brindell, Ł. Orzeł, J.M. Dąbrowski, K. Śpiewak, P. Łabuz, M. Pacia, A. Stochel-Gaudyn, W. Macyk, R. van Eldik, G. Stochel, Coord. Chem. Rev. 327–328, 143 (2016) (https://doi.org/10.1016/j.ccr.2016.05.013).

J.J. Tang, S.F. Li, Adv. Mater. Res. 807–809, 402 (2013) (https://doi.org/10.4028/www.scientific.net/AMR.807-809.402).

A. Kafizas, X. Wang, S.R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez, R. Quesada-Cabrera, C. Li, I.P. Parkin, J.R. Durrant, J. Phys. Chem. A. 120, 715 (2016) (https://doi.org/10.1021/acs.jpca.5b11567).

K. Kannan, D. Radhika, A.S. Nesaraj, K. Kumar Sadasivuni, L. Sivarama Krishna, Inorg. Chem. Commun. 122, 108307 (2020) (https://doi.org/10.1016/j.inoche.2020.108307).

D. Zhang, S. Dong, Prog. Nat. Sci. Mater. Int. 29, 277 (2019) (https://doi.org/10.1016/j.pnsc.2019.03.012).

S. Rajagopal, B. Paramasivam, K. Muniyasamy, Sep. Purif. Technol. 252, 117444 (2020) (https://doi.org/10.1016/j.seppur.2020.117444).

R. Arshad, T.H. Bokhari, T. Javed, I.A. Bhatti, S. Rasheed, M. Iqbal, A. Nazir, S. Naz, M.I. Khan, M.K.K. Khosa, M. Iqbal, M. Zia-Ur-Rehman, J. Mater. Res. Technol. 9, 3168 (2020) (https://doi.org/10.1016/j.jmrt.2020.01.062).

I.Y. Habib, J. Burhan, F. Jaladi, C.M. Lim, A. Usman, N.T.R.N. Kumara, S.C.E. Tsang, A.H. Mahadi, Catal. Today 1 (2020) (https://doi.org/10.1016/j.cattod.2020.04.008).

J. Tang, Y. Chen, Z. Dong, J. Environ. Sci. (China). 79, 153 (2019) (https://doi.org/10.1016/j.jes.2018.11.020).

D. Wang, P. Zhao, J. Yang, G. Xu, H. Yang, Z. Shi, Q. Hu, B. Dong, Z. Guo, Colloids Surfaces A Physicochem. Eng. Asp. 603, 125147 (2020) (https://doi.org/10.1016/j.colsurfa.2020.125147).

A. Tolosana-Moranchel, C. Pecharromán, M. Faraldos, A. Bahamonde, Chem. Eng. J. 403, (2021). (https://doi.org/10.1016/j.cej.2020.126186).

G. Odling, N. Robertson, Catal. Sci. Technol. 9, 533 (2019) (https://doi.org/10.1039/c8cy02438c).

N.V. Danyliuk, T.R. Tatarchuk, A.V. Shyichuk, Phys. Chem. Solid State. 2, 338 (2020) (https://doi.org/https://doi.org/10.15330/pcss.21.2.338-346).

N. Danyliuk, T. Tatarchuk, A. Shyichuk, Phys. Chem. Solid State. 4, 727 (2020) (https://doi.org/10.15330/pcss.21.4.727-736).

Downloads

Published

2021-02-24

How to Cite

Danyliuk, N., Mironyuk, I., Tatarchuk, T., & Shyichuk, A. (2021). Optimal H2O2 concentration in advanced oxidation over titanium dioxide photocatalyst. Physics and Chemistry of Solid State, 22(1), 73–79. https://doi.org/10.15330/pcss.22.1.73-79

Issue

Section

Scientific articles

Most read articles by the same author(s)