Photocatalytic degradation of Congo red dye using Fe-doped TiO2 nanocatalysts
DOI:
https://doi.org/10.15330/pcss.22.4.697-710Keywords:
Fe-doped TiO2, Photocatalysis, Congo red, SmartphoneAbstract
Fe-doped TiO2 (2, 5, 10, 15 and 20% wt. of Fe) photocatalysts have been synthesized by sol-gel method using titanium aquacomplex precursor. The structure and morphology have been characterized by XRD, BET, SEM, and EDS analyses, Mossbauer and IR spectroscopies. XRD analysis confirmed the anatase structure. The introduction of ferric ions into the titania structure causes its amorphization. The crystallite sizes of obtained samples are around 3 nm. Fe-doped TiO2 samples possess mesoporous structure and high specific surface area (from 274 m2g-1 for 5Fe-TiO2 to 416.4 m2g-1 for 20Fe-TiO2). Mossbauer spectroscopy data confirms the incorporation of Fe3+ ions in the anatase structure. Photocatalytic degradation of Congo red dye using Fe-doped TiO2 photocatalysts was studied under the UV-A light. Optimized conditions for photocatalytic degradation of CR in the presence of hydrogen peroxide are obtained. It was found that the 2Fe-TiO2 sample in the presence of 20 mM H2O2 solution showed highest efficiency in dye photodegradation (99.4%) under UV-A light. The photodegradation kinetics was analyzed using a smartphone and fits well with first-order kinetics model.
References
K.T. Chung, Azo dyes and human health: A review, J. Environ. Sci. Heal. - Part C Environ. Carcinog. Ecotoxicol. Rev. 34, 233 (2016), https://doi.org/10.1080/10590501.2016.1236602 .
A. Malik, E. Grohmann, Environmental protection strategies for sustainable development, 2012. https://doi.org/10.1007/978-94-007-1591-2.
B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innov. 3, 275 (2019), https://doi.org/10.1016/j.biori.2019.09.001.
F.M. Drumond Chequer, G.A.R. de Oliveira, E.R. Anastacio Ferraz, J. Carvalho, M.V. Boldrin Zanoni, D.P. de Oliveir, Textile Dyes: Dyeing Process and Environmental Impact, Eco-Friendly Text. Dye. Finish. (2013). https://doi.org/10.5772/53659.
Z.A. AL-Othman, R. Ali, M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies, Chem. Eng. J. 184, 238 (2012), https://doi.org/10.1016/j.cej.2012.01.048.
P.W. Wong, T.T. Teng, N.A.R. Nik Norulaini, Efficiency of the coagulation-flocculation method for the treatment of dye mixtures containing disperse and reactive dye, Water Qual. Res. J. Canada. 42, 54 (2007), https://doi.org/10.2166/wqrj.2007.008.
H.S. Wahab, H.M. Hadi, Visible light N-TiO2-induced photodegradation of congo red: Characterization, kinetics and mechanistic study, Int. J. Environ. Sci. Technol. 14, 2135 (2017), https://doi.org/10.1007/s13762-017-1361-8.
P. Arora, A. Fermah, J.K. Rajput, H. Singh, J. Badhan, Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles, Environ. Sci. Pollut. Res. 24, 19546 (2017), https://doi.org/10.1007/s11356-017-9571-7.
M. Movahedi, A.R. Mahjoub, S. Janitabar-Darzi, Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO2, J. Iran. Chem. Soc. 6, 570 (2009), https://doi.org/10.1007/BF03246536.
L. Nadjia, E. Abdelkader, B. Ahmed, Photodegradation study of Congo Red in Aqueous Solution using ZnO/ UV-A: Effect of pH And Band Gap of other Semiconductor Groups, J. Chem. Eng. Process Technol. 02, 1 (2011), https://doi.org/10.4172/2157-7048.1000108.
C.A. Huerta-Aguilar, V. Palos-Barba, P. Thangarasu, R.T. Koodali, Visible light driven photo-degradation of Congo red by TiO2–ZnO/Ag: DFT approach on synergetic effect on band gap energy, Chemosphere. 213 (2018) 481–497. https://doi.org/10.1016/j.chemosphere.2018.09.053.
N. Danyliuk, J. Tomaszewska, T. Tatarchuk, Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications, J. Mol. Liq. 309 (2020). https://doi.org/10.1016/j.molliq.2020.113077.
D. Ayodhya, G. Veerabhadram, A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection, Mater. Today Energy. 9. 83 (2018), https://doi.org/10.1016/j.mtener.2018.05.007.
J. Singh, S. Kumar, Rishikesh, A.K. Manna, R.K. Soni, Fabrication of ZnO–TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules, Opt. Mater. (Amst). 107 (2020) 110138. https://doi.org/10.1016/j.optmat.2020.110138.
R.K. Wahi, W.W. Yu, Y. Liu, M.L. Mejia, J.C. Falkner, W. Nolte, V.L. Colvin, Photodegradation of Congo Red catalyzed by nanosized TiO2, J. Mol. Catal. A Chem. 242, 48 (2005), https://doi.org/10.1016/j.molcata.2005.07.034.
S. Province, Effect of pH on Adsorption and Photocatalytic Degradation Efficiency of Different Catalysts on Removal of Methylene Blue, Asian J. Chem. 26, 6097 (2014), https://doi.org/http://dx.doi.org/10.14233/ajchem.2014.17908.
K. Aguilar, A. Garvín, A. Ibarz, Effect of the concentration on the kinetic model of the photo-degradation of 5-hydroxymethylfurfural by UV irradiation, J. Food Eng. 191, 67 (2016), https://doi.org/10.1016/j.jfoodeng.2016.06.026.
N.A.M. Barakat, M.A. Kanjwal, I.S. Chronakis, H.Y. Kim, Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers, J. Mol. Catal. A Chem. 366, 333(2013), https://doi.org/10.1016/j.molcata.2012.10.012.
M. Feilizadeh, F. Attar, N. Mahinpey, Hydrogen peroxide-assisted photocatalysis under solar light irradiation: Interpretation of interaction effects between an active photocatalyst and H2O2, Can. J. Chem. Eng. 97, 2009 (2019), https://doi.org/10.1002/cjce.23455.
I. Ahmad, Q. Fasihullah, F.H.M. Vaid, Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution, J. Photochem. Photobiol. B Biol. 82, 21 (2006), https://doi.org/10.1016/j.jphotobiol.2005.08.004.
F.B. Li, X.Z. Li, The enhancement of photodegradation efficiency using Pt-TiO2 catalyst, Chemosphere. 48. 1103 (2002), https://doi.org/10.1016/S0045-6535(02)00201-1.
B. Wang, Q. Li, W. Wang, Y. Li, J. Zhai, Preparation and characterization of Fe 3+ -doped TiO 2 on fly ash cenospheres for photocatalytic application, Appl. Surf. Sci. 257, 3473 (2011), https://doi.org/10.1016/j.apsusc.2010.11.050.
W. Li, X. Liu, H. Li, Hydrothermal synthesis of graphene/Fe3+-doped TiO2 nanowire composites with highly enhanced photocatalytic activity under visible light irradiation, J. Mater. Chem. A. 3, 15214 (2015), https://doi.org/10.1039/c5ta00763a.
T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, J. Hazard. Mater. 155, 572 (2008), https://doi.org/10.1016/j.jhazmat.2007.11.106.
P. Pongwan, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO 2 nanoparticles, Eng. J. 16, 143 (2012), https://doi.org/10.4186/ej.2012.16.3.143.
I. Mironyuk, T. Tatarchuk, H. Vasylyeva, M. Naushad, I. Mykytyn, Adsorption of Sr(II) cations onto phosphated mesoporous titanium dioxide: Mechanism, isotherm and kinetics studies, J. Environ. Chem. Eng. 7 (2019) 103430. https://doi.org/10.1016/j.jece.2019.103430.
I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V.M. Gun’ko, I. Mykytyn, Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr(II) cations, J. Mol. Liq. 282, 587 (2019), https://doi.org/10.1016/j.molliq.2019.03.026.
I. Mironyuk, T. Tatarchuk, M. Naushad, H. Vasylyeva, I. Mykytyn, Highly efficient adsorption of strontium ions by carbonated mesoporous TiO 2, J. Mol. Liq. 285, 742 (2019), https://doi.org/10.1016/j.molliq.2019.04.111.
K. Alamelu, B.M. Jaffar Ali, TiO2-Pt composite photocatalyst for photodegradation and chemical reduction of recalcitrant organic pollutants, J. Environ. Chem. Eng. 6 5720 (2018), https://doi.org/10.1016/j.jece.2018.08.042.
D.I. Anwar, D. Mulyadi, Synthesis of Fe-TiO2 Composite as a Photocatalyst for Degradation of Methylene Blue, Procedia Chem. 17, 49 (2015), https://doi.org/10.1016/j.proche.2015.12.131.
M. Asiltürk, F. Sayilkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, J. Photochem. Photobiol. A Chem. 203, 64 (2009), https://doi.org/10.1016/j.jphotochem.2008.12.021.
G. Li, L. Yi, J. Wang, Y. Song, Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: Mechanisms, geometric and operation parameters, Ultrason. Sonochem. 60 (2020) 104806. https://doi.org/10.1016/j.ultsonch.2019.104806.
F. Han, V.S.R. Kambala, R. Dharmarajan, Y. Liu, R. Naidu, Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts, Environ. Technol. Innov. 12, 27 (2018), https://doi.org/10.1016/j.eti.2018.07.004.
D. Komaraiah, E. Radha, J. Sivakumar, M.V. Ramana Reddy, R. Sayanna, Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating, Surfaces and Interfaces. 17 (2019) 100368. https://doi.org/10.1016/j.surfin.2019.100368.
H. Moradi, A. Eshaghi, S.R. Hosseini, K. Ghani, Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrason. Sonochem. 32, 314 (2016), https://doi.org/10.1016/j.ultsonch.2016.03.025.
V.O. Kotsyubynsky, I.F. Myronyuk, L.I. Myronyuk, V.L. Chelyadyn, M.H. Mizilevska, A.B. Hrubiak, O.K. Tadeush, F.M. Nizamutdinov, The effect of pH on the nucleation of titania by hydrolysis of TiCl4: Der Einfluss des pH-Werts auf die Keimbildung von Titandioxid bei der Hydrolyse von TiCl4, Materwiss. Werksttech. 47 (2016) 288, https://doi.org/10.1002/mawe.201600491.
N. Danyliuk, T. Tatarchuk, K. Kannan, A. Shyichuk, Optimization of TiO2-P25 photocatalyst dose and H2O2 concentration for advanced photo-oxidation using smartphone-based colorimetry, Water Sci. Technol. 84 469 (2021), https://doi.org/10.2166/wst.2021.236.
C.E. Rodríguez-Torres, A.F. Cabrera, L.A. Errico, C. Adn, F.G. Requejo, M. Weissmann, S.J. Stewart, Local structure and magnetic behaviour of Fe-doped TiO2 anatase nanoparticles: Experiments and calculations, J. Phys. Condens. Matter. 20 (2008). https://doi.org/10.1088/0953-8984/20/13/135210.
D. Cordischi, N. Burriesci, F. D’Alba, M. Petrera, G. Polizzotti, M. Schiavello, Structural characterization of Fe/Ti oxide photocatalysts by X-ray, ESR, and Mössbauer methods, J. Solid State Chem. 56, 182 (1985), https://doi.org/10.1016/0022-4596(85)90055-6.
H.I. Masanori Hirano, Toyoko Joji, Michio Inagaki, Direct Formation of Iron(III)-Doped Titanium Oxide (Anatase) by Thermal Hydrolysis and Its Structural Property, J. Am. Ceram. Soc. 87, 35 (2008). https://doi.org/10.1111/j.1151-2916.2004.tb19941.x.
W.C. Hung, Y.C. Chen, H. Chu, T.K. Tseng, Synthesis and characterization of TiO 2 and Fe/TiO 2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane, Appl. Surf. Sci. 255 2205(2008). https://doi.org/10.1016/j.apsusc.2008.07.079.
H.J. Lin, T.S. Yang, M.C. Wang, C.S. Hsi, Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol-gel spin coating, J. Alloys Compd. 610 478 (2014), https://doi.org/10.1016/j.jallcom.2014.05.053.
W. Chen, H. Xiao, H. Xu, T. Ding, Y. Gu, Photodegradation of methylene blue by TiO2-Fe3O4-bentonite magnetic nanocomposite, Int. J. Photoenergy. 2015 (2015). https://doi.org/10.1155/2015/591428.
T. Tatarchuk, N. Danyliuk, A. Shyichuk, W. Macyk, M. Naushad, Photocatalytic degradation of dyes using rutile TiO2 synthesized by reverse micelle and low temperature methods: real-time monitoring of the degradation kinetics, J. Mol. Liq. 342 (2021) 117407. https://doi.org/10.1016/j.molliq.2021.117407.