Low-temperature deposition of Cd1-xZnxTe layers by laser sputtering and their physical properties
DOI:
https://doi.org/10.15330/pcss.23.1.154-158Keywords:
passivating coatings, cadmium telluride, thin films, laser epitaxy, low temperature photoluminescenceAbstract
CdZnTe films were grown by the method of modulated infrared laser deposition at a substrate temperature Tsub ≤ 1200C from appropriate sources on oriented single-crystal substrates Si, GaAs, InSb in the same technological conditions in one technological cycle. Surface morphology and spectra of low-temperature photoluminescence (T = 4.2K) in the energy range from 1.30 to 1.70 eV were studied. Luminescence spectra were analyzed and presented from three different energy regions: from 1.70 eV to 1.60 eV with exciton emission, from 1.60 eV to 1.55 eV by donor-acceptor transitions (DAP) and region A-centers from 1, 55 to 1.40 eV. The presence in the low-temperature photoluminescence spectra of free exciton bands, excitons on the neutral acceptor and neutral donor, and their phonon replicas on CdZnTe/InSb films testifies to the high structural perfection inherent in materials of detector quality with composition corresponding of the CdZnTe-target.
References
S. Chander, M.S. Dhaka, Thin Solid Films 625, 131 (2017); https://doi.org/10.1016/j.tsf.2017.01.052.
S. Chander, A. Purohit, S.L. Patel, M.S. Dhaka, Phys. E. 89, 29 (2017); https://doi.org/10.1016/j.physe.2017.02.002.
S. Chander, M.S. Dhaka, Sol. Energy 150, 577 (2017); https://doi.org/10.1016/j.solener.2017.05.013.
G.Q. Zha, Y. Lin, D.M. Zeng, T.T. Tan, W.Q. Jie, Appl. Phys. Lett. 106, 062103 (2015); http://dx.doi.org/10.1063/1.4907973.
H.Q. Le, J.L. Ducote, S. Molloi, Med. Phys. 37, 1225 (2010); http://dx.doi.org/10.1118/1.3312435.
C. Li, N. Murase, Chem. Lett., 34(1), 92 (2005); https://doi.org/10.1246/cl.2005.92.
X. Zhao et al., Appl. Phys. Lett. 105(25), 252101 (2014); https://doi.org/10.1063/1.4904993.
C.L. Littler, B.P. Gorman, D.F. Weirauch, P.K. Liao, H.F. Schaake, J. Electron. Mater. 34, 768 (2005); https://doi.org/10.1007/s11664-005-0018-4.
M. Basol, V.K. Kapur, M.L. Ferris, J. Appl. Phys. 66, 1816 (1989); https://doi.org/10.1063/1.344353.
S.N. Alamri, Phys. Status Solidi (a) 200, 352 (2003); https://doi.org/10.1002/pssa.200306691.
Aydinli, A. Compaan, G. Contreras-Puente, A. Mason, Solid State Commun. 80, 465 (1991); https://doi.org/10.1016/0038-1098(91)90051-V.
J. Takahashi, K. Mochizuki, K. Hitomi, T. Shoji, J. Cryst. Growth 269, 419 (2004); https://doi.org/10.1016/j.jcrysgro.2004.05.054.
H. Zhou, D. Zeng, S. Pan, Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. etect. Assoc. Equip. 698, 81 (2013); https://doi.org/10.1016/j.nima.2012.09.024.
Q. Huda; M.M. Aliyu; M.A. Islam; M.S. Hossain; M.M. Alam; M.R. Karim; M.A.M. Bhuiyan; K. Sopian; N. Amin, (IEEE 39th Photovoltaic Specialists Conference, (PVSC), 2013); https://doi.org/10.1109/PVSC.2013.6744242.
E. Yilmaz; R. Turan; A. Aktağ; Ali Akgöl, 37th IEEE Photovoltaic Specialists Conference (2011); https://doi.org/10.1109/PVSC.2011.6186216.