Heavy hole scattering on intrinsic acceptor defects in cadmium telluride: calculation from the first principles
DOI:
https://doi.org/10.15330/pcss.23.1.89-95Keywords:
Transport phenomena, Crystal defects, CdTe, Ab initio calculationAbstract
In the present paper the way to describe the energy spectrum, the wave function and self- consistent potential in a semiconductor with a sphalerite structure at a predetermined temperature is proposed. Using this approach within the framework of the supercell method the temperature dependences of the ionization energy of intrinsic acceptor defects in cadmium telluride are calculated. In addition, on the basis of this method, the temperature dependences of the heavy holes effective mass, optical and acoustic deformation potentials, as well as of the heavy holes scattering parameters on ionized impurities, polar optical, piezooptic and piezoacoustic phonons were established. Within the framework of short-range scattering models the temperature dependences of the heavy hole mobility and Hall factor in CdTe crystals with defects concentrations 5´*1022 - 5*´1024 cm-3 are considered.
References
I. Sankin, D. Krasikov, Phys. Status Solidi A 215, 1800887 (2019); https://doi.org/10.1002/pssa.201800887.
Su-Huai Wei, S.B. Zhang, Phys. Rev. B: Condens. Matter Mater. Phys. 66, 155211 (2002); https://doi.org/10.1103/PhysRevB.66.155211.
Jie Ma, Su-Huai Wei, T. A. Gessert, Ken K. Chin, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 245207 (2011); https://doi.org/10.1103/PhysRevB.83.245207.
Ji-Hui Yang, Wan-Jian Yin, Ji.-Sang. Park, Jie Ma, Su-Huai Wei, Semicond. Sci.Technol. 31, 083002 (2016); https://doi.org/10.1088/0268-1242/31/8/083002.
D. Krasikov, A. Knizhnik, B. Potapkin, S. Selezneva, T. Sommerer, Thin Solid Films 535, 322 (2013); https://doi.org/10.1016/j.tsf.2012.10.027.
W. Orellana, E. Menendez-Proupin, M.A. Flores, Phys. Status Solidi B 256, 1800219 (2019); https://doi.org/10.1002/pssb.201800219.
I. Sankin, D. Krasikov, J. Mater. Chem. A 5, 3503 (2017); https://doi.org/10.1039/C6TA09155E.
O. Malyk, S. Syrotyuk, Comput. Mater. Sci. 139, 387 (2017); https://doi.org/10.1016/j.commatsci.2017.07.039.
K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012); https://doi.org/10.1103/PhysRevB.85. 115317.
O. Restrepo, K. Varga, S. Pantelides, Appl. Phys. Lett. 94, 212103 (2009); https://doi.org/10.1063/1.3147189.
O.D. Restrepo, K.E. Krymowski, J. Goldberger, W. A Windl, New J. Phys. 16, 105009 (2014); https://doi.org/10.1088/1367-2630/16/10/105009).
X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M. Buongiorno Nardelli, K.W. Kim, Phys. Rev. B 87, 115418 (2013); https://doi.org/10.1103/PhysRevB.87.115418.
Wu. Li, Phys. Rev. B 92, 075405 (2015); https://doi.org /10.1103/PhysRevB.92.075405.
O.P. Malyk, S.V. Syrotyuk, Journal of Elec. Materi. 47, 4212 (2018); https://doi.org/10.1007/s11664-018-6068-1.
O.P. Malyk, Journal of Elec. Materi. 49, 3080 (2020); https://doi.org/ 10.1007/s11664-020-07982-6.
O.P. Malyk, S.V. Syrotyuk, Physics and Chemistry of Solid State. 20(4), 338 (2019); https://doi.org/10.15330/pcss.20.4.338-344.
G.L. Hansen, J.L. Schmit, T.N. Casselman, J. Appl. Phys. 53, 7099 (1982); https://doi.org/10.1063/1.330018.
B. Segall, D.T.F. Marple, Physics and Chemistry of II-VI Compounds, Eds. M. Aven and J.S. Prener (North Holland, Amsterdam1967). P. 317.
D. de Nobel, Philips Res. Rep. 14, 361 (1959).
S. Yamada, J. Phys. Soc. Jpn. 15, 1940 (1960); https://doi.org/10.1143/JPSJ.15.1940.
L.S. Dang, G. Neu, R. Romestain, Solid State Commun. 44, 1187 (1982); https://doi.org/10.1016/0038-1098(82)91082-1.
O.P. Malyk, Ukr. J. Phys. 35, 1374 (1990).
O.P. Malyk, J. Alloys Compd. 371(1-2), 146 (2004); https://doi.org/10.1016/j.jallcom.2003.07.033.