Energy structure of mixed halide CeF2Cl and CeFCl2 crystals

Authors

  • Ya.M. Chornodolskyy Ivan Franko National University of Lviv, Lviv, Ukraine
  • V.O. Karnaushenko Ivan Franko National University of Lviv, Lviv, Ukraine
  • S.O. Ihnatsevych Ivan Franko National University of Lviv, Lviv, Ukraine
  • A.S. Voloshinovskii Ivan Franko National University of Lviv, Lviv, Ukraine
  • S.V. Syrotyuk Lviv Polytechnic National University, Lviv, Ukraine
  • P.I. Vankevych Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine
  • P.A. Bolkot Hetman Petro Sahaidachnyi National Army Academy Lviv, Ukraine
  • A.Y. Derevjanchuk Sumy State University Sumy, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.2.250-254

Keywords:

scintillator, band structure, density of states, exciton, projector augmented-wave method.

Abstract

The band energy structures of CeF2Cl and CeFCl2 crystals have been calculated using the projector augmented-wave (PAW) method and the hybrid exchange-correlation functional PBE0. The valence band top consists of 2p states of F and 3p states of Cl. An energy gap is observed between the 5d states of Ce in the bottom part of the conduction band of both crystals, forming two subbands, 5d1 and 5d2, with very different effective electron masses (2.49 m0 and 0.19 m0 for CeF2Cl and 5.95 m0 and 0.84 m0 for CeFCl2, respectively). The 4f states of Ce are placed within the forbidden band. The obtained values for the band gap of CeF2Cl and CeFCl2 crystals are 6 eV and 4.6 eV, respectively.

References

C. Dujardin, E. Auffray, E. Bourret-Courchesne, et al. Needs, trends, and advances in inorganic scintillators, IEEE Transactions on Nuclear Science, 65(8), 1977 (2018); https://doi.org/10.1109/TNS.2018.2840160.

K. Shimamura, E. Vı́llora, S. Nakakita, et al. Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals, Journal of crystal growth, 264(1-3), 208 (2004); https://doi.org/10.1016/j.jcrysgro.2003.12.018.

F. Cappella, A. d’Angelo, and F. Montecchia, Performances and potential of a CeCl3 scintillator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 618(1-3), 168, (2010); https://doi.org/10.1016/j.nima.2010.02.105.

F. G. A. Quarati, P. Dorenbos, J. van der Biezen, et al. Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 729, 596 (2013); https://doi.org/10.1016/j.nima.2013.08.005.

A. Bessiere, P. Dorenbos, C.W.E. van Eijk, et al. Luminescence and scintillation properties of the small band gap compound LaI3: Ce3+, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 537(1-2), 22 (2005); https://doi.org/10.1016/j.nima.2004.07.224.

M. D. Birowosuto, P. Dorenbos, Novel γ- and X-ray scintillator research: on the emission wavelength, light yield and time response of Ce3+ doped halide scintillators, Physica status solidi (a), 206(1), 9 (2009); https://doi.org/10.1002/pssa.200723669.

Ya. M. Chornodolskyy, V. O. Karnaushenko, S. V. Syrotyuk, et al. Energy structure of CeCl2Br and CeClBr2 crystals, Journal of Physical Studies, 27(3), 3702 (2023); https://doi.org/10.30970/jps.27.3702.

K. Przystupa, Ya. M. Chornodolskyy, Ja. Selech, et al. The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals, Materials, 16(14), 5085 (2023); https://doi.org/10.3390/ma16145085.

W. W. Moses, S. E. Derenzo, M. J. Weber, et al. Scintillation mechanisms in cerium fluoride, Journal of luminescence, 59(1-2), 89 (1994); https://doi.org/10.1016/0022-2313(94)90026-4.

K. Wei, Ch. Guo, J. Deng, Ch Shi, Electronic structure of CeF3 crystal, Journal of electron spectroscopy and related phenomena, 79, 83 (1996); https://doi.org/10.1016/0368-2048(96)02808-3.

D. F. Anderson, Cerium fluoride: a scintillator for high-rate applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 287(3), 606 (1990); https://doi.org/10.1016/0168-9002(90)91585-Y.

O. Guillot-Noël, J.T.M. de Haas, P. Dorenbos, et al. Optical and scintillation properties of cerium-doped LaCl3, LuBr3 and LuCl3, Journal of luminescence 85(1-3), 21 (1999); https://doi.org/10.1016/S0022-2313(99)00063-0.

E. V. D. van Loef, P. Dorenbos; C. W. E. van Eijk, et al. High-energy-resolution scintillator: Ce3+ activated LaBr3, Applied physics letters, 79(10), 1573 (2001); https://doi.org/10.1063/1.1385342.

G. Ren, P. Yu, Ch. Xiaofeng, et al. Growth, thermo-stability and radiation damage of cerium-doped lanthanum chloride (LaCl3: Ce) scintillation crystal, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579(1), 11 (2007); https://doi.org/10.1016/j.nima.2007.04.003.

J. P. Perdew, Density functional theory and the band gap problem, International Journal of Quantum Chemistry 28(S19), 497 (1985); https://doi.org/10.1002/qua.560280846.

M. Nikl, Wide band gap scintillation materials: progress in the technology and material understanding, physica status solidi (a), 178(2), 595 (2000); https://doi.org/10.1002/1521-396X(200004)178:2<595::AID-PSSA595>3.0.CO;2-X.

M. Lewin, E. H. Lieb, and R. Seiringer, The local density approximation in density functional theory, Pure and Applied Analysis, 2(1), 35 (2020); https://doi.org/10.2140/paa.2020.2.35.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, 77(18), 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

Data retrieved from the Materials Project for CeF3 (mp-510560) from database version v2022.10.28. https://doi.org/10.17188/1263001.

Data retrieved from the Materials Project for CeCl3 (mp-582011) from database version v2022.10.28. https://doi.org/10.17188/1276931.

Yu-Hong Dai, A perfect example for the BFGS method, Mathematical Programming, 138, 501 (2013); https://doi.org/10.1007/s10107-012-0522-2.

X. Gonze, B. Amadon, P.-M. Anglade, et al. ABINIT: First-principles approach to material and nanosystem properties, Computer Physics Communications, 180(12), 2582 (2009); https://doi.org/10.1016/j.cpc.2009.07.007.

Ya. M. Chornodolskyy, V. O. Karnaushenko, V. V. Vistovskyy, et al. Energy band structure peculiarities and luminescent parameters of CeX3 (X= Cl, Br, I) crystals, Journal of Luminescence, 237, 118147 (2021); https://doi.org/10.1016/j.jlumin.2021.118147.

O. Kochan, Ya. Chornodolskyy, Ja. Selech, et al. Energy Structure and Luminescence of CeF3 Crystals, Materials 14(15), 4243 (2021); https://doi.org/10.3390/ma14154243.

M. Loyd, L. Stand, D. Rutstrom, et al. Investigation of CeBr3−xIx scintillators, Journal of Crystal Growth, 531, 125365 (2020); https://doi.org/10.1016/j.jcrysgro.2019.125365.

H. Wei, V. Martin, A. Lindsey, et al. The scintillation properties of CeBr3−xClx single crystals, Journal of luminescence 156, 175 (2014); https://doi.org/10.1016/j.jlumin.2014.08.015.

Downloads

Published

2024-05-13

How to Cite

Chornodolskyy, Y., Karnaushenko, V., Ihnatsevych, S., Voloshinovskii, A., Syrotyuk, S., Vankevych, P., … Derevjanchuk, A. (2024). Energy structure of mixed halide CeF2Cl and CeFCl2 crystals. Physics and Chemistry of Solid State, 25(2), 250–254. https://doi.org/10.15330/pcss.25.2.250-254

Issue

Section

Scientific articles (Physics)