Synthesis and crystal structure of two-slab Ba1-хSrxNd2In2O7 indates
DOI:
https://doi.org/10.15330/pcss.23.2.375-379Keywords:
slab perovskite-like structure, interblock distance, polyhedron deformation, compounds of An 1BnO3n 1 typeAbstract
The conditions of isovalent substitution of Barium atoms by Strontium atoms in the A-position of the BaNd2In2O7 two-slab perovskite-like structure of Ba1-xSrxNdIn2O7 are established: 0 <=x<= 0.22. The tetragonal (P42/mnm) crystal structure of Ba1-xSrxNdIn2O7 phases with x = 0.1 and 0.2 was determined by the Rietveld method. Ba1-xSrxNdIn2O7 structure is based on two-dimensional (infinite in the XY plane) perovskite-like blocks of two slabs connected by vertices of deformed InO6 octahedra. Neighboring blocks are separated by a layer of NdO9 polyhedra and interconnected by O – Nd – O bonds. It is found that isovalent substitution of Barium atoms by Strontium atoms reduces the Nd – O2 interblock distance, which brings the structure of two-dimensional slab structure closer to the structure of three-dimensional perovskite and is one of the main factors of destruction of Ba1-xSrxNdIn2O7 slab structure at х > 0.2.
References
K.S. Aleksandrov, B.V. Beznosikov, Perovskites. Present and Future (RAS, Novosibirsk, 2004).
S. Kamimura, H. Yamada, Chao-Nan Xu, Appl. Phys. Lett. 101(9), 91 (2012); https://doi.org/10.1063/1.4749807.
Yu. Titov, S.G. Nedilko, V. Chornii, V. Scherbatskii, N. Belyavina, V. Markiv, V. Polubinskii, Solid State Phenomena 230, 67 (2015); https://doi.org/10.4028/www.scientific.net/SSP.230.67.
I.S. Kim, T. Nakamura, M. Itoh, J. Ceram, Soc. Jap. 101(1175), 800 (1993); https://doi.org/10.2109/jcersj.101.800.
S. Kato, M. Ogasawara, M. Sugai, S. Nakata, Sol. St. Ionics 149(1-2), 53 (2002); https://doi.org/10.1016/s0167-2738(02)00138-8.
K. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, K. Toda, Chem Mater. 17(20), 5161 (2005); https://doi.org/10.1021/cm050982c.
P.D. Battle, J.C. Burley, D.J. Gallon, C.P. Grey, J. Sloan, J. Solid State Chem. 177(1), 119 (2004); https://doi.org/10.1016/S0022-4596(03)00333-5.
M.V. Lobanov, M. Greenblatt, E.N. Caspi, J.D. Jorgensen, D.V. Sheptyakov, et al., J. Phys: Condens Matter. 16(29). 5339 (2004); https://doi.org/10.1088/0953-8984/16/29/023.
R.E. Schaak, T.E. Mallouk, Chem Mater. 14(4), 1455 (2002); https://doi.org/10.1021/cm010689m.
Y.A. Titov, N.N. Belyavina, M.S. Slobodyanik, O.I. Nakonechna, N.Y. Strutynska, French-Ukrainian Journal of Chemistry 7(1), 10 (2019); https://doi.org/10.17721/fujcV7I1P10-15.
Y.A. Titov, N.M. Belyavina, V.Y. Markiv, M.S. Slobodyanik, Y.A. Kraevska, V.P. Yaschuk, Reports of the National Academy of Sciences of Ukraine (1), 148 (2010); http://dspace.nbuv.gov.ua/handle/123456789/19268.
M. Caldes, C. Michel, T. Rouillon, M. Hervieu, B. Raveau, J. Materials Chemistry 12(3), 473 (2002); https://doi.org/10.1039/B108987K.
Y. Titov, N. Belyavina, M. Slobodyanik, O. Nakonechna, N. Strutynska, M. Tymoshenko, Open Chemistry 18(1), 1294 (2020); https://doi.org/10.1515/chem-2020-0090.
Y.A. Titov, N.M. Belyavina, M.S. Slobodyanik, V.V. Chumak, Reports of the National Academy of Sciences of Ukraine (6), 95 (2016); http://dx.doi.org/10.15407/dopovidi2016.06.095.
Y.A. Titov, N.M. Belyavina, M.S. Slobodyanik, V.V. Chumak, O.I. Nakonechna, Voprosy Khimii i Khimicheskoi Tekhnologii (6), 228 (2019); https://doi.org/10.32434/0321-4095-2019-127-6-228-235.
M. Dashevskyi, O. Boshko, O. Nakonechna, N. Belyavina, Mettalofizika Noveishie Tekhnologii 39(4), 541 (2017); https://doi.org/10.15407/mfint.39.04.0541.
R.D. Shannon, Acta Crystallogr. A32, 751 (1976); https://doi.org/10.1107/S0567739476001551.