Effect of scandium atoms substitution on the two-slab structure of scandate BaGd2Sc2O7

Authors

  • Y.A. Titov Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • N.M. Belyavina Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • M.S. Slobodyanik Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • O.I. Nakonechna Laboratory for Surface Science and Coating Technologies, EMPA − Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland
  • N.Yu. Strutynska Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • V.V. Chumak Zhytomyr Ivan Franko state university, Zhytomyr, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.742-747

Keywords:

compounds of An 1BnO3n 1 – type, slab perovskite-like structure, isomorphism, X-ray powder diffraction

Abstract

Tetragonal crystal structure (space group P42/mnm (No 136)) of the isovalently substituted BaGd2Sc2-xInxO7 phase with x = 0.5 was determined by X-ray powder diffraction methods. The crystal structure of BaGd2Sc1.5In0.5O7 consists of two-dimensional perovskite-like blocks with a thickness of two slabs of (Sc,In)O6 octahedra connected by vertices. A slab of GdO9 polyhedra is located between the blocks. There are no direct (Sc,In) – O – (Sc,In) connections  between the octahedra of adjacent blocks. They are "stitched" to each other with the help of – O – Gd – O – bonds. Ba atoms are arranged only in the cubooctahedral voids of the perovskite-like block and their coordination number is 12. Analysis of the crystal chemical characteristics of BaGd2Sc2O7 and BaGd2Sc1.5In0.5O7 showed that upon the isovalent substitution of Sc atoms by large In atoms in slab perovskite-like structure leads to increase of the deformation degree of (Sc,In)O6 octahedra, GdO9 interblock polyhedra, increase in average (Sc,In) – O bond length and a decrease the degree deformation of BaO12 cuboctahedrons. Such changes lead to the destabilization of the slab perovskite-like structure and determine the limitation of the area of BaGd2Sc2-xInxO7 solid solutions and the absence of BaGd2In2O7 compound.

References

P. Ding, W. Li, H. Zhao, C. Wu, L. Zhao, B. Dong, S. Wang, Review on Ruddlesden–Popper Perovskites as Cathode for Solid Oxide Fuel Cells, J. Phys.: Mater., 4(2), 022002 (2021); https://doi.org/10.1088/2515-7639/abe392.

H. Xiao, P. Liu, W. Wang, R. Ran, W. Zhou, Z. Shao, Ruddlesden–Popper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment, Energy & Fuels, 34(8), 9208 (2020); https://doi.org/10.1021/acs.energyfuels.0c02301.

R.E. Schaak, T.E. Mallouk, Perovskites by Design: A Toolbox of Solid-State Reactions, Chem. Mater., 14(4), 1455 (2002); https://doi.org/10.1021/cm010689m.

S. Kamimura, Strong Reddish-Orange Light Emission From Stress-Activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) With Perovskite-Related Structures, Appl. Phys. Lett., 101(9), 91 (2012); https://doi.org/10.1063/1.4749807.

G.Nirala, D. Iadav, S. Upadhyay, Ruddlesden–Popper Phase A2BO4 Oxides: Recent Studies on Structure, Electrical, Dielectric, and Optical Properties, J. Advanced Ceramics, 9(2), 129 (2020); https://doi.org/10.1007/s40145-020-0365-x.

P.D. Battle, J.C. Burley, D.J. Gallon, C.P. Grey, J. Sloan, Magnetism and Structural Chemistry of the n=2 Ruddlesden–Popper Phase La3LiMnO7, J. Sol. St. Chem., 177(1), 119 (2004); https://doi.org/10.1016/S0022-4596(03)00333-5.

K. Fujii; Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, J.R. Hester, New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4, Chem. Mater., 26(8), 2488 (2014); https://doi.org/10.1021/cm500776x.

S. Kato, M. Ogasawara, M. Sugai, S. Nakata, Synthesis and Oxide Ion Conductivity of New Layered Perovskite La1-xSr1+xInO4-d, Solid State Ionics, 149(1–2), 53 (2002); https://doi.org/10.1016/S0167-2738(02)00138-8.

Y.S. Zhen, J.B. Goodenough, Oxygen – Ion conductivity in Ba8In6O17, Mat. Res. Bull., 25(6), 785 (1990).

I. S. Kim, T. Nakamura, M. Itoh, Humidity Sensing Effects of the Layered Oxides SrO·(LaScO3)n (n = 1,2, ∞), J. Ceram. Soc. Jap., 101(7), 779 (1993).

X. Yang, S. Liu, F. Lu, J. Xu, X. Kuang, Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors, J. Phys. Chem., 120(12), 6416 (2016); https://doi.org/10.1021/acs.jpcc.6b00700.

Y.O. Titov, N.N. Belyavina, M.S. Slobodyanik, V.V. Chumak, Changes of the Slab Structure Constitution of Scandate SrLaScO4 at the Isovalent Substitution of Strontium Atoms, Reports of the National Academy of Sciences of Ukraine, (7), 59 (2019); https://doi.org/10.15407/dopovidi2019.07.059.

Y.O. Titov, M.S. Slobodyanik, N.Y. Strutynska, V.V. Chumak, Synthesis and Crystal Structure of Slab Perovskites SrLa1-xGdxScO4, Reports of the National Academy of Sciences of Ukraine, (2), 75 (2022); https://doi.org/10.15407/dopovidi2022.02.075.

Y. Titov, N. Belyavina, M. Slobodyanik, O. Nakonechna, N. Strutynska, Effect of Strontium Atoms Substitution on the Features of Two-Slab Structure of Sr1-xCaxLa2Sc2O7 Scandates, French-Ukrainian Journal of Chemistry, 9(1), 44 (2021); https://doi.org/10.17721/fujcV9I1P44-50.

Y.O. Titov, N.M. Belyavina, M.S. Slobodyanik, V.V. Chumak, O.I. Nakonechna, Synthesis and Crystal Structure of Isovalently Substituted Slab SrLa2-xDyxSc2O7 Scandates, Voprosy Khimii i Khimicheskoi Tekhnologii, (6), 228 (2019); https://doi.org/10.32434/0321-4095-2019-127-6-228-235.

Y.O. Titov, N.N. Belyavina, M.S. Slobodyanik, V.V, Chumak, O.I. Nakonechna, Features of the SrLa2Sc2-xInxO7 Two-Slab Structure, Voprosy Khimii i Khimicheskoi Tekhnologii, (2), 118 (2020); http://dx.doi.org/10.32434/0321-4095-2020-129-2-118-124.

Y.O. Titov, V.V, Chumak, M.V. Tymoshenko, Synthesis and Crystal Structure of Two-Slab Scandates BaLa2–xDyxSc2O7, Reports of the National Academy of Sciences of Ukraine, (3), 68 (2022); https://doi.org/10.15407/dopovidi2022.03.068.

Y.O. Titov, N.N. Belyavina, V.Ya.Markiv, M.S. Slobodyanik, Ya.A.Krayevska, V.P.Yaschuk, V.V, Chumak, Synthesis and Crystal Structure of BaLn2Sc2O7, Reports of the National Academy of Sciences of Ukraine, (5), 172 (2009);

Y.O. Titov, M.S. Slobodyanik, V.V.Polybinskii, Isovalent Substitution of Scandium Atoms in Two-Layer Scandates of Ruddlesden - Popper AIILn2Sc2O7 (AII = Ba, Sr), Ukrainian Chemistry Journal, 80(2), 75 (2014);

M. Dashevskyi, O. Boshko, O. Nakonechna, N. Belyavina, Phase Transformations in Equiatomic Y–Cu Powder Mixture at Mechanical Milling, Mettalofiz. Noveishie Tekhnol., 39(4), 541 (2017); https://doi.org/10.15407/mfint.39.04.0541.

S.K. Kurtz, T.T. Perry, A Powder Technique for the Evaluation of Nonlinear Optical Materials, J. Appl. Phys., 39(8), 3798 (1968); https://doi.org/10.1063/1.1656857.

R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica, A32, 751 (1976); https://doi.org/10.1107/S0567739476001551.

Brown, D. Altermatt, Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database, Acta Crystallographica, B41(4), 244 (1985); https://doi.org/10.1107/S0108768185002063.

Published

2023-12-21

How to Cite

Titov, Y., Belyavina, N., Slobodyanik, M., Nakonechna, O., Strutynska, N., & Chumak , V. (2023). Effect of scandium atoms substitution on the two-slab structure of scandate BaGd2Sc2O7. Physics and Chemistry of Solid State, 24(4), 742–747. https://doi.org/10.15330/pcss.24.4.742-747

Issue

Section

Scientific articles (Chemistry)