Effect of short-term heat treatment in the hydrogen on magnetic properties of ZnO:Mn nanocrystals
DOI:
https://doi.org/10.15330/pcss.23.3.569-574Keywords:
ZnO nanocrystals, ultrasonic aerosol pyrolysis, heat treatment, hydrogen, magnetic propertiesAbstract
The magnetic properties of ZnO:Mn(2at%) nanocrystals synthesized by ultrasonic aerosol pyrolysis were studied. It has been established that short-term thermal treatment in hydrogen does not affect the magnetization of the synthesized sample, which had ferromagnetic and paramagnetic components. The sample, which underwent heat treatment in air at T = 850°C and acquired paramagnetic properties, after heat treatment in hydrogen again became ferromagnetic without a paramagnetic phase. It has been established by the EPR method that the structure of defects in the synthesized ZnO:Mn(2%) NCs is inhomogeneous. It changes after heat treatment in hydrogen. It is shown that the controlled thermal treatment of the samples, first in air and then in hydrogen, makes it possible to predictably change their magnetic properties. The results obtained are explained using the model of coupled magnetic polarons. During thermal treatment in hydrogen, the ratio of the number of oxygen vacancies Vo and interstitial Mn2+ ions changes in the samples.
References
J. Zhang, R. Skomski, D.J. Sellmyer, Sample preparation and annealing effects on the ferromagnetism in Mn-doped ZnO, Journal of Applied Physics 97, 10D303 (2005); https://doi.org/10.1063/1.1845858.
J.M.D Coey, M,Venkatesan, C,B, Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Journal Nature Materials 4, 173 (2005); https://doi.org/10.1038/nmat1310.
S. Chattopadhyay, K. Neogi, A. Sarkar, M.D. Mukadam, S.M. Yusuf , A. Banerjee, S. Bandyopadhyay, Defects induced ferromagnetism in Mn doped ZnO, Journal of Magnetism and Magnetic Materials 323, 363 (2011); https://doi.org/10.1016/j.jmmm.2010.09.042.
B.B. Straumal, A.A. Mazilkin, S.G. Protasova,A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. Van Aken, E. Goering, B. Baretzky, Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam, J. Phys. Rev. B 79, 155203 (2009); https://doi.org/10.1103/PhysRevB.79.205206.
T.V. Manh, T.L. Phan, B.W. Lee, Chunli Liu, T.A. Ho, T.D. Thanh, N.M. Vuong, S.C. Yu, Ferromagnetism in Zn1–xMnxO Nanoparticles Prepared by Ball Milling, IEEE Transactions on Magnetics 51(11), 1 (2015); https://doi.org/10.1109/TMAG.2015.2438064.
V. Yu. Vorovsky, A.V. Kovalenko, A. I. Kushnerov, O.V. Khmelenko, Preparation of zinc oxide nanopowders doped with manganese, which have ferromagnetic properties at room temperature, Functional Materials 25(1), 61 (2018); https://doi.org/10.15407/fm25.01.61.
O.V. Kovalenko, M.F. Bulaniy, V.Y. Vorovskiy, O.V. Khmelenkо, Photoluminescence and EPR spectrum of ZnO:Mn nanocrystals, Journal of Physics and Electronics 26(1), 69 ( 2018); https://doi.org/10.15421/331811.
A. Singhal, Study of hydrogenation versus de-loading of Co and Mn doped ZnO semiconductor, Journal of Alloys and Compounds 507(1), 312 (2010) https://doi.org/10.1016/j.jallcom.2010.07.189.
Q.Q. Gao, Q.X. Yu, K. Yuan, X.N. Fu, B. Chen, C.X. Zhu, H. Zhu, Influence of annealing atmosphere on room temperature ferromagnetism of Mn-doped ZnO nanoparticles, J. Appl. Surface Science 264, 7 (2013); https://doi.org/10.1016/j.apsusc.2012.08.108.
V.K. Sharma, G.D. Varma, Oxygen vacancies induced room temperature ferromagnetism in hydrogenated Mn-doped ZnO, Journal of Applied Physics 102, 056105 (2007); https://doi.org/10.1063/1.2778283.
X. Xue, Liangliang Liu, Zhu Wang. X. Xue, L. Liu, Z. Wang,Y. Wu, Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles, Journal of Applied Physics 115, 033902 (2014); https://doi.org/10.1063/1.4862306.
M.F. Bulaniy, V.Yu. Vorovsky, A.V. Kovalenko, O.V. Khmelenko, Synthesis of Nanopowders ZnO and ZnO : Mn by Ultrasonic Sprey Pyrolysis, Journal of Nano- and Electronic Physics 8(2), 02043 (2016); https://doi.org/10.21272/jnep.8(2).02043.
O.V. Kovalenko, V.Yu. Vorovsky, O.V. Khmelenko, Ye.G. Plakhtii, Peculiarities of doping of ZnO:Mn nanocrystals during their synthesis by the aerosol pyrolysis method, Journal of Physics and Electronics 28(2), 91 ( 2020); https://doi.org/10.15421/332027.
R. Viswanatha, S. Sapra, S. Sen Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, Synthesis and Characterization of Mn-Doped ZnO Nanocrystals, Journal of Physical Chemistry B 108, 6303 (2004); https://doi.org/10.1021/jp049960o.
O.V. Kovalenko, V.Yu. Vorovsky, O.V. Khmelenkо, The effect of heat treatment on the magnetic properties of ZnO:Mn nanocrystals obtained by ultrasonic aerosol pyrolysis, Functional Materials 27(4), 687 (2020); https://doi.org/10.15407/fm27.04.687.
H. Zhang, S. Qina, Y. Cao, Z. Yang, L. Si, W. Zhong, D. Wu, M. Xu, Q. Xu, Enhanced room temperature ferromagnetism in hydrogenated Zn0.98Mn0.02O, Applied Surface Science 271, 421 (2013); http://dx.doi.org/10.1016/j.apsusc.2013.02.009.
L. Xing-Chong, L. Zhi-Ha, Z. Feng-Ming, Effect of annealing atmosphere on ferromagnetism in Mn doped ZnO films, J. Chin. Phys. B 19(2), 027502 (2010); http://dx.doi.org/10.1088/1674-1056/19/2/027502.
R.K. Singhal, A. Samariya, S. Kumar,Y. T. Xing, U.P. Deshpande, T. Shripathi, S.N. Dolia, Elisa B. Saitovitch, Switch ‘on’ and ‘off’ ferromagnetic ordering through the induction and removal of oxygen vacancies and carriers in doped ZnO: A magnetization and electronic structure study, Physica Status Solidi (A) Applications and Materials 207(10), 2373 (2010); https://doi.org/10.1002/pssa.200925637.
K. Yuan, Q.X. Yu, Q.Q. Gao, J. Wang, X.T. Zhang, A threshold of Vo+/Vo++ to room temperature ferromagnetism of hydrogenated Mn doped ZnO nanoparticles, Applied Surface Science 258, 3350 (2012); https://doi.org/10.1016/j.apsusc.2011.08.080.
E.V. Lavrov, F. Herklotz, and J. Weber, Identification of two hydrogen donors in ZnO, Phys. Rev. B 79, 165210 (2009); https://doi.org/10.1103/PhysRevB.79.165210.