The influence of the cooling rate on the structure and corrosion properties of the multicomponent high-entropy alloy CoCrFeMnNiBe

Authors

  • V.A. Polonskyy Oles Honchar Dnipro National University, Dnipro, Ukraine
  • O.I. Kushnerov Oles Honchar Dnipro National University, Dnipro, Ukraine
  • V.F. Bashev Dnipro State Technical University, Kamianske, Ukraine
  • S.I. Ryabtsev Oles Honchar Dnipro National University, Dnipro, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.506-512%20

Keywords:

high-entropy alloy, beryllium, structure, phase composition, electrochemical properties, corrosion resistance

Abstract

Samples of the multicomponent high-entropy alloy CoCrFeMnNiBe were obtained by the methods of casting and melt-quenching, and their phase composition and electrochemical behavior were investigated. With the help of X-ray phase analysis, it was established that the studied alloy in the as-cast state has a multiphase structure, in which there are phases with lattices of the FCC, BCC, and BeNi(Co) intermetallics (structural type B2). Quenching from the melt leads to a significant decrease in the BCC phase content. The values of stationary potentials and areas of electrochemical stability of cast and melt-quenched CoCrFeMnNiBe alloy samples, as well as corrosion current densities, were determined. It is shown that all samples of the CoCrFeMnNiBe alloy behave inertly in corrosion tests, which allows them to be considered corrosion-resistant. The results of the work can be used in the development of modern multifunctional and corrosion-resistant materials.

References

T.S. Srivatsan, M. Gupta, High Entropy Alloys, Innovations, advances, and applications (CRC Press, Boca Raton, 2020).

H. Xiang, F.-Z. Dai, Y. Zhou, High- Entropy Materials. From Basics to Applications, 1st ed. (WILEY- VCH GmbH, Weinheim, Germany, 2023).

J. Brechtl, P.K. Liaw, High-Entropy Materials: Theory, Experiments, and Applications (Springer International Publishing, Cham, 2021).

D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122, 448 (2017); https://doi.org/10.1016/j.actamat.2016.08.081.

S.I. Mudry, R.M. Bilyk, R.Y. Ovsianyk, Y.O. Kulyk, T.M. Mika, Structural features of InPbGaSnCu molten high entropy alloy, Physics and Chemistry of Solid State, 20(4), 432 (2019); https://doi.org/10.15330/pcss.20.4.432-436.

V.V. Girzhon, V.V. Yemelianchenko, O.V. Smolyakov, A.S. Razzokov, Analysis of structure formation processes features in high-entropy alloys of Al-Co-Cr-Fe-Ni system during laser alloying, Results in Materials, 15(June), 100311 (2022); https://doi.org/10.1016/j.rinma.2022.100311.

O.I. Kushnerov, S.I. Ryabtsev, V.F. Bashev, Metastable states and physical properties of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films, Molecular Crystals and Liquid Crystals, 750(1), 135 (2023); https://doi.org/10.1080/15421406.2022.2073043.

G.A. Bagliuk, M.V. Marych, Yu.O. Shishkina, A.A. Mamonova, O.M. Gripachevsky, S.F. Kyryliuk, Features of phase and structure formation in obtaining high-entropy alloy of Fe-Ti-Cr-Mn-Si-C system from a powder mixture of ferroalloys, Physics and Chemistry of Solid State, 23(3), 620 (2022); https://doi.org/10.15330/pcss.23.3.620-625.

V. Girzhon, V. Yemelianchenko, O. Smolyakov, High entropy coating from AlCoCrCuFeNi alloy, obtained by laser alloying, Acta Metallurgica Slovaca, 29(1), 44 (2023); https://doi.org/10.36547/ams.29.1.1710.

M. Dufanets, V. Sklyarchuk, Yu. Plevachuk, Y. Kulyk, S. Mudry, The Structural and Thermodynamic Analysis of Phase Formation Processes in Equiatomic AlCoCuFeNiCr High-Entropy Alloys, Journal of Materials Engineering and Performance, 29(11), 7321 (2020); https://doi.org/10.1007/s11665-020-05250-6.

O.I. Kushnerov, V.F. Bashev, Structure and Physical Properties of Cast and Splat-Quenched CoCr0.8Cu0.64FeNi High Entropy Alloy, East European Journal of Physics, 48(3), 43 (2021); https://doi.org/10.26565/2312-4334-2021-3-06.

H.C. Ozdemir, A. Nazarahari, B. Yilmaz, D. Canadinc, E. Bedir, R. Yilmaz, U. Unal, H. J. Maier, Machine learning – informed development of high entropy alloys with enhanced corrosion resistance, Electrochimica Acta, 476, 143722 (2024); https://doi.org/10.1016/j.electacta.2023.143722.

Z. Tang, L. Huang, W. He, P. Liaw, Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys, Entropy, 16(2), 895 (2014); https://doi.org/10.3390/e16020895.

Y. Shi, B. Yang, P. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Metals, 7(2), 43 (2017); https://doi.org/10.3390/met7020043.

N. Kumar, M. Fusco, M. Komarasamy, R. S. Mishra, M. Bourham, K. L. Murty, Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy, Journal of Nuclear Materials, 495, 154 (2017); https://doi.org/10.1016/j.jnucmat.2017.08.015.

Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science, 396, 1420 (2017); https://doi.org/10.1016/j.apsusc.2016.11.176.

B. Wang, J. Huang, J. Fan, Y. Dou, H. Zhu, D. Wang, Preparation of FeCoNiCrMn High Entropy Alloy by Electrochemical Reduction of Solid Oxides in Molten Salt and Its Corrosion Behavior in Aqueous Solution, Journal of The Electrochemical Society, 164(14), E575 (2017); https://doi.org/10.1149/2.1521714jes.

M. Hu, X. Ouyang, F. Yin, X. Zhao, Z. Zhang, X. Wang, Effect of Boronizing on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy, Materials, 16(10), 3754 (2023); https://doi.org/10.3390/ma16103754.

H. Shahmir, P. Saeedpour, M. S. Mehranpour, S. A. A. Shams, C. S. Lee, Hetero-Deformation Induced Hardening in a CoCrFeNiMn High-Entropy Alloy, Crystals, 13(5), 844 (2023); https://doi.org/10.3390/cryst13050844.

A.V. Zavdoveev, O.A. Gaivoronsky, V.D. Poznyakov, A.V. Klapatyuk, D.V. Vedel, T. Baudin, O.A. Los, R.A. Kozin, M.A. Skoryk, Powder Welding Wire of Cantor’s High-Entropy Alloying System for Surfacing, Metallofizika i Noveishie Tekhnologii, 44(8), 1025 (2022); https://doi.org/10.15407/mfint.44.08.1025.

M.P. Semen’ko, R.V. Ostapenko, S.M. Naumenko, P.O. Teselko, Influence of technological factors on the structure and properties of high-entropy FeCrMnCoNi alloy, Journal of Nano- and Electronic Physics, 11(6), (2019); https://doi.org/10.21272/jnep.11(6).06017.

V.F. Bashev, O.I. Kushnerov, S.I. Ryabtsev, Structure and properties of CoCrFeNiMnBe high-entropy alloy films obtained by melt quenching, Molecular Crystals and Liquid Crystals, 765(1), 145 (2023); https://doi.org/10.1080/15421406.2023.2215125.

A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, Main features of QUALX2.0 software for qualitative phase analysis, Powder Diffraction, 32(S1), 129 (2017); https://doi.org/10.1017/S0885715617000240.

V.A. Polonskyy, V.F. Bashev, O.I. Kushnerov, Structure and corrosion-electrochemical properties of Fe-based cast high-entropy alloys, Journal of Chemistry and Technologies, 28(2), 176 (2020); https://doi.org/10.15421/082019.

V.А. Polonskyy, V.F. Bashev, O.I. Kushnerov, Structure and corrosion-electrochemical properties of rapidly quenched Fe5CrCuNiMnSi and Fe5CoCuNiMnSi high entropy alloys, Journal of Chemistry and Technologies, 30, 88 (2022); https://doi.org/10.15421/jchemtech.v30i1.237109.

Published

2024-08-28

How to Cite

Polonskyy, V., Kushnerov, O., Bashev, V., & Ryabtsev, S. (2024). The influence of the cooling rate on the structure and corrosion properties of the multicomponent high-entropy alloy CoCrFeMnNiBe. Physics and Chemistry of Solid State, 25(3), 506–512. https://doi.org/10.15330/pcss.25.3.506-512

Issue

Section

Scientific articles (Physics)