Effect of synthesis methods and comparative study of structural properties of micro and nano Ferrites
DOI:
https://doi.org/10.15330/pcss.24.1.77-83Keywords:
Ferrites, XRD, Solid state method, coprecipitaion methodAbstract
In this study, Mn(x)Zn(1-x)Fe2O4 ferrite samples with x=0.4 and 0.6 were synthesized using a solid-state method and co-precipitation method. In order to determine the effects of various concentrations (x) on the ferrite's structure, particle size, and crystalline phases, prepared samples were analysed using X-ray diffraction (XRD). The XRD patterns revealed that the synthesized samples display a single-phase cubic spinel structure.FTIR analysis showed for both synthesis method have absorption band in the range 400 to 1000 cm-1.SEM analysis shows extreme homogeneity of all the samples. EDX analysis was used to examine for Mn0.4Zn0.6Fe204,The prepared ferrites powders contain Mn, Zn, and Fe, as shown in both synthesis methods.In this approach, alternative synthesis routes for these ferrites are suggested in this study in order to get around some limitations of the traditional preparation method.
References
K.P Mudholakar, S. TambeVinaykumar, S.S Kakati, S. N. Mathad., Effect of Sintering condition on Magnetization and Microstructure of CuxCo(1-x)Fe2O4 Ferrites, Int. J. Adv. Sci. Eng, 9(2), 2678 (2022); https://doi.org/10.29294/IJASE.9.2.2022.2678-2685.
R. S. Totagi, N. J. Choudhari, S. S. Kakati, C. S. Hiremath, S. B. Koujalagi, and R. B. Pujar, Electrical properties of Ni-Mg-Cu nanoferrites synthesized by sucrose precursor technique, Scholars Research Library Der Pharma Chemica, 7 (3), 11 (2015); Accessed: Feb. 21, 2023.
S. S. Gandhad, P. M. Patil, S. N. Mathad, L. v. Hublikar, P. R. Jeergal, and R. B. Pujar, Effect of Aluminum Doping on Structural and Mechanical Properties of Ni–Mg Ferrites, International Journal of Self-Propagating High-Temperature Synthesis, 28(4), 271 (2019); https://doi.org/10.3103/S1061386219040046/FIGURES/3.
A. Kumar, S. Molakeri, S. Kalyane, A. B. Kulkarni, and S. N. Mathad, Elastic Properties of Nickel Ferrite Synthesized by Combustion and Microwave Method using FT-IR Spectra, Int. J. Adv. Sci. Eng, 3 (422), (2017), Accessed: Feb. 21, 2023.
M. R. Patil, M. K. Rendale, S. N. Mathad, and R. B. Pujar, FTIR Spectra and Elastic Properties of Cd-Substituted Ni-Zn Ferrites 1, International Journal of Self-Propagating High-Temperature Synthesis, 26(1), 33 (2017), https://doi.org/10.3103/S1061386217010083.
S. S. Yattinahalli, S. B. Kapatkar, N. H. Ayachit, and S. N. Mathad, Synthesis and structural characterization of nanosized nickel ferrite, International Journal of Self-Propagating High-Temperature Synthesis, 22 (3), 147 (2013); https://doi.org/10.3103/S1061386213030114/METRICS.
S. N. Adarakatti V S Pattar P K Korishettar, B V Grampurohit, S. N. Mathad. A B Kulkarni, Synthesis, structural and electrical studies of li-ni-cu nano ferrites, Acta Chemica Iasi, 26 (1), 1 (2018); https://doi.org/10.2478/achi-2018-0001.
Shashidhargouda. H. R. and S. N. Mathad, Synthesis and structural analysis of Ni0.45 Cu0.55 Mn2O4 by Williamson–Hall and size–strain plot methods, Ovidius University Annals of Chemistry, 29 (2), 122 (2018); https://doi.org/10.2478/AUOC-2018-0018.
S. Vijaykumar, V. R. Hiremath, S. K. Sushant, and S. N. Mathad, Synthesis, Characterization and Evaluation of δ-Al2O3 Nanoparticles Prepared by Chemical Method with Variation of pH, Journal of Nano- and Electronic Physics, 14 (3), 3027 (2022); https://doi.org/10.21272/JNEP.14(3).03027.
S. Kakati, M. K. Rendale, and S. N. Mathad, Synthesis, Characterization, and Applications of CoFe2O4 and M-CoFe2O4 (M = Ni, Zn, Mg, Cd, Cu, RE) Ferrites: A Review, International Journal of Self-Propagating High-Temperature Synthesis, 30(4), 189 (2021); https://doi.org/10.3103/S1061386221040038.
S. S. Yattinahalli, S. B. Kapatkar, and S. N. Mathad, Review of Nanoscience Materials and its applications, Research Journal of Engineering and Technology, 7(3), 121 (2016); https://doi.org/10.5958/2321-581X.2016.00024.6.
S. S. Yattinahalli, S. B. Kapatkar, and S. N. Mathad, Structural and Mechanical Properties of a Nano Ferrite, Advanced Science Focus, 2(1), 42 (2014); https://doi.org/10.1166/ASFO.2014.1079.
A. B. Kulkarni and S. N. Mathad, Effect of Sintering Temperature on Structural Properties of Cd doped Co-Zn Ferrite, Journal of Nano- and Electronic Physics, 10(1), 1001 (2018); https://doi.org/10.21272/JNEP.10(1).01001.
R. M. Shedam, A. M. Bagwan, S. N. Mathad, A. B. Gadkari, M. R. Shedam, and R. G. Sonkawade, Nd3+ added Mg–Cd ferrite material study the thick film gas sensing properties, Mater Chem Phys, 293, 126871 (2023); https://doi.org/10.1016/j.matchemphys.2022.126871.
R. M. Shedam, P. P. Kashid, S. N. Mathad, R. B. Deshmukh, M. R. Shedam, and A. B. Gadkari, Ferrites gas sensors: A Review, Physics and Chemistry of Solid State, 23(3), 626 (2022); https://doi.org/10.15330/PCSS.23.3.626-640.
S. U. Durgadsimi, V. R. Kattimani, N. S. Maruti, A. B. Kulkarni, and S. N. Mathad, Synthesis and structural analysis of nickel ferrite synthesized by co-deposition, Eurasian Physical Technical Journal, 18(4) (38), 14-19 (2021); https://doi.org/10.31489/2021NO4/14-19.
R. Y. Kolekar, S. B. Kapatkar, and S. N. Mathad, Nickel-Doped Cobalt Zinc Ferrites Co0.8–xNixZn0.2Fe2O4(x=0.0–0.56) by Solid-State Reaction: Synthesis and Characterization, International Journal of Self-Propagating High-Temperature Synthesis, 29(4), 196 (2020); https://doi.org/10.3103/S1061386220040044/FIGURES/5.
R. Vishwarup and S. N. Mathad, Facile Synthesis of Nano Mg-Co Ferrites (x=0.15, 0.20, 0.25, 0.30, 0.35, and 0.40) via Co-precipitation Route: Structural Characterization, Materials International, 2(4) 0471-0476 (2020); https://doi.org/10.33263/Materials24.471476.
M. B. Tahir, T. Iqbal, A. Hassan, and S. Ghazal, Wet Chemical Co-precipitation Synthesis of Nickel Ferrite Nanoparticles and Their Characterization, J InorgOrganometPolym Mater, 27 (5), 1430 (2017); https://doi.org/10.1007/S10904-017-0598-5/FIGURES/7.
P. Zsabka, G. Leinders, A. Baena, T. Cardinaels, K. Binnemans, and M. Verwerft, Synthesis of gadolinium-doped thorium dioxide via a wet chemical route: Limitations of the co-precipitation method, Journal of Nuclear Materials, 489, 211 (2017); https://doi.org/10.1016/J.JNUCMAT.2017.03.052.
Z. Zhang, Y. Liu, G. Yao, G. Zu, and Y. Hao, Synthesis and Characterization of NiFe2O4 Nanoparticles via Solid-State Reaction, Int J Appl Ceram Technol, 10(1), 142 (2013); https://doi.org/10.1111/J.1744-7402.2011.02719.X.
P. Parhi, T. N. Karthik, and V. Manivannan, Synthesis and characterization of metal tungstates by novel solid-state metathetic approach, J Alloys Compd, 465(1-2), 380 (2008); https://doi.org/10.1016/J.JALLCOM.2007.10.089.
S. Mathad, Solid-State Synthesis and Structural Features of Li0.5Ni0.75-x/2Znx/2Fe2O4 Ferrites, International Journal of Self-Propagating High-Temperature Synthesis, (2019); https://doi.org/10.3103/S1061386219010060.
J. F. Marco, J. R. Gancedo, M. Gracia, J. L. Gautier, E. Ríos, and F. J. Berry, Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study, J Solid State Chem, 153(1), 74 (2000); https://doi.org/10.1006/JSSC.2000.8749.
S. S. Kakati, T. M. Makandar, M. K. Rendale, and S. N. Mathad, Green Synthesis Approach for Nanosized Cobalt Doped Mg–Zn through Citrus Lemon Mediated Sol–Gel Auto Combustion Method, International Journal of Self-Propagating High-Temperature Synthesis, 31(3), 131 (2022); https://doi.org/10.3103/S1061386222030049/TABLES/2.
S. Kazi, S. Feeda. S. S. Kakati, S. N. Mathad, S. L. Galgali, M. K. Rendale, Sintering Temperature Dependent Structural and Mechanical Studies of BaxPb1−xTiO3 Ferroelectrics, Journal of Nano- and Electronic Physics, 12(4), 4018 (2020); https://doi.org/10.21272/JNEP.12(4).04018.
M. C. Dimri, S. C. Kashyap, D. C. Dube, and S. K. Mohanta, Complex permittivity and permeability of Co-substituted NiCuZn ferrite at rf and microwave frequencies, J. Electroceram., 16(4), 331 (2006); https://doi.org/10.1007/s10832-006-9874-4.
R. Sen, P. Jain, R. Patidar, S. Srivastava, Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method, Elsevier, 2, 3750 (2015); https://doi.org/10.1016/j.matpr.2015.07.165.
G. Padmapriya, A. Manikandan, V. Krishnasamy, S. K. Jaganathan, and S. A. Antony, Enhanced Catalytic Activity and Magnetic Properties of Spinel MnxZn1−xFe2O4(0.0 ≤ x ≤ 1.0) Nano-Photocatalysts by Microwave Irradiation Route, J Supercond Nov Magn, 29 (8), 2141 (2016); https://doi.org/10.1007/S10948-016-3527-X.
L. C. Shidaganal, A. B. Kulkarni, S. B. Kapatkar, S. N. Mathad, and R. B. Pujar, Al-Doped Co-Cd Nanoferrites by Solution-Combustion Synthesis: Preparation and Structural Characterization, International Journal of Self-Propagating High-Temperature Synthesis, 29(3), 176 (2020); https://doi.org/10.3103/S1061386220030103.
R. D. Waldron, Infrared spectra of ferrites, Physical Review, 99(6), 1727 (1955); https://doi.org/10.1103/PHYSREV.99.1727.
M. K. Rendale, S. N. Mathad, and V. Puri, Structural, mechanical and elastic properties of Ni0.7-xCoxZn0.3Fe2O4 nano-ferrite thick films, Microelectronics International, 34(2), 57 (2017); https://doi.org/10.1108/MI-02-2016-0009/FULL/HTML.
S. L. Galagali et al., Fourier transform infrared spectroscopy and elastic properties of Mg1-xCdxFe2O4 ferrite systems., Thaiscience.info, 41(5), 992 (2023).
M. Patil, M. Rendale, S. Mathad, FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites, International Journal of Self-Propagating High-Temperature Synthesis, 26(1), 33 (2017); https://doi.org/10.3103/S1061386217010083.
Ied Mohammed Mnawe , M. Y. Hassaan , Osama Mohmaed Hemeda , A.S. Abdel-Moety, XRD, FTIR and electrical properties investigation Of Ni0.6Zn0.4 CrxFe2-XO4 thin films, NVEO, 9(1), 1617 (2022).