Progress unveiled: a comprehensive review on non-toxic carbon-based quantum dots - synthesis, unique properties, and diverse applications

Authors

  • Shridhar N. Mathad KLE Institute of Technology, Huballi, India
  • Sheela Sangam K.L.S Gogte Institute of Technology, Belagavi, Karnataka, India
  • Raghavendra Bakale Jain College of Engineering, Belagavi, Karnataka, India
  • Deepak B. Shirgaonkar Anandibai Raorane Arts, Commerce and Science College, Vaibhavwadi, Maharashtra, India

DOI:

https://doi.org/10.15330/pcss.25.3.528-539

Keywords:

Non-toxic Carbon-Based Quantum Dots, Synthesis, Unique Properties, Diverse Applications

Abstract

Carbon-based quantum dots (CQDs) represent a highly promising category of nanomaterials due to their distinctive optical, electronic, and chemical characteristics. This review delves into the synthesis methodologies of non-toxic CQDs, with particular emphasis on eco-friendly approaches that minimize environmental impact. The discussion spans their diverse applications across various domains, highlighting their role in pushing the boundaries of sustainability. Notably, the review elucidates the optical attributes of non-toxic CQDs, underscoring their tunable fluorescence, a feature that renders them invaluable for applications in bioimaging, sensors, and optoelectronic devices. Moreover, their non-toxic nature is pivotal for biomedical endeavors, facilitating advancements in drug delivery, photothermal therapy, and bio-labeling. In addition to their biomedical potential, this review delves into the utility of non-toxic CQDs in environmental sensing and catalysis, showcasing their adaptability and multifunctionality. Through an in-depth exploration of recent advancements, challenges, and future prospects, this comprehensive review aims to provide invaluable insights into the burgeoning field of non-toxic CQD research, propelling the development of sustainable and innovative technologies.

References

H. Li, Z. Kang, Y. Liu, & S. T. Lee, Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 22(46), 24230 (2012); https://doi.org/10.1039/C2JM90163C.

S. Zhu, Q.Meng, L.Wang, J.Zhang, Y.Song, H.Jin, ... & B.Yang,. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie International Edition, 52(14), 3953 (2013); http://dx.doi.org/10.1002/anie.201300519.

S.L Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, & X.W. Du. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry B, 2(7), 1021 (2014); https://doi.org/10.1039/B812943F.

S. Qu, X. Wang, Q. Lu, X. Liu, L. Wang, & S. Aa. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angewandte Chemie International Edition, 54 (42), 12395 (2015); https://doi.org/10.1002/anie.201206791.

J. Kai, S. Sun, L. Zhang, Y. Lu, A. Wu, & C. Cai, Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. AngewandteChemie International Edition, 54(18), 5360 (2015); https://doi.org/10.1002/ange.201501193.

G, Guili, Lin Li, Dan Wang, Mingjian Chen, Zhaoyang Zeng, Wei Xiong, Xu Wu, and Can Guo. Carbon dots: Synthesis, properties and biomedical applications. Journal of Materials Chemistry 9(33), 6553 (2021); https://doi.org/10.1039/D1TB01077H.

L, Meng Li, Bin Bin Chen, Chun Mei Li, and Cheng Zhi Huang. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green chemistry 21(3) 449 (2019); https://doi.org/10.1039/C8GC02736F.

J. Łukasz, J. Radwan-Pragłowska, M.Piątkowski, and D.Bogdał. Smart, tunable CQDs with antioxidant properties for biomedical applications—ecofriendly synthesis and characterization. Molecules, 25(3), 736 (2020); https://doi.org/10.3390/molecules25030736.

Z. Chunyan, Z. Chen, S Gao, B.L. Goh, I.B. Samsudin, K.W. Lwe, Y.Wu, C. Wu, and XiaodiSu. Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 29(6) 628 (2019); https://doi.org/10.1016/j.pnsc.2019.11.007.

D, Adita, and Preston T. Snee. Synthetic developments of nontoxic quantum dots. ChemPhysChem, 17(5), 598 (2016); https://doi.org/10.1002/cphc.201500837.

A, Nayab, Murtaza Najabat Ali, and Tooba Javaid Khan. Carbon quantum dots for biomedical applications: review and analysis. Frontiers in Materials, 8, 700403 (2021); https://doi.org/10.3389/fmats.2021.700403.

K, Ajaypal, K. Pandey, R. Kaur, N.Vashishat, and M. Kaur. Nanocomposites of carbon quantum dots and graphene quantum dots: environmental applications as sensors. Chemosensors, 10(9) 367 (2022); https://doi.org/10.3390/chemosensors10090367.

C, Bin Bin, Meng Li Liu, and Cheng Zhi Huang. Carbon dot-based composites for catalytic applications. Green Chemistry, 22(13), 4034 (2020); https://doi.org/10.1039/D0GC01014F.

S. Karamveer, H. Kaur, S.Siwal, A. Saini, Dai-Viet N. Vo, and V. Thakur. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. Chemosphere, 299, 134364 (2022); https://doi.org/10.1016/j.chemosphere.2022.134364.

C. Kokkonda J. Sugunakara, A. Sharma, and A. Singh. Carbon Quantum Dots in Healthcare: A Promising Solution for Sustainable Healthcare and Biomedical Practices. In E3S Web of Conferences, 453, 01017. EDP Sciences, (2023); https://doi.org/10.1051/e3sconf/202345301017.

S. Hu, A. Trinchi, & P. Atkin. Engineering carbon quantum dots for photomediatedtheranostics. Nanoscale, 7(47), 20233 (2015); https://doi.org/10.1007/s12274-017-1616-1.

W. Y., et al. Microwave-assisted green synthesis of carbon dots from food waste for colorimetric and fluorometric detection of Hg2+ ions. Nanomaterials, 5(4), 1497 (2015); http://dx.doi.org/10.1016/j.snb.2013.04.079.

K. Z. et al. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Progress in Materials Science, 72, 1 (2015); https://doi.org/10.1016/j.pmatsci.2006.10.016.

Yu, H., et al. Microwave and ultrasonic assisted synthesis of carbon quantum dots with multi-color emission from 4-aminophenol and their applications for sensitive detection of mercury ions. Sensors and Actuators B: Chemical, 224, 926 (2016); http://dx.doi.org/10.1039/C9TC01640F.

Z. M., et al. One-pot to synthesize multifunctional carbon dots for near-infrared fluorescence imaging and photothermal cancer therapy. ACS Applied Materials & Interfaces, 5(22), 11337(2013); https://pubs.acs.org/doi/abs/10.1021/acsami.6b07453.

Qu, D., et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 4, 5294 (2016); https://doi.org/10.1038/srep05294.

W. L., et al. Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry B, 5(32), 6099 (2017); https://doi.org/10.1039/C4TC00988F.

Xu, X., et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 136(36), 12536 (2014); https://doi.org/10.1021/ja040082h.

L, H., et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 18(19), 4888 (2016); https://doi.org/10.1039/C8GC02736F.

J. K., et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. AngewandteChemie International Edition, 54(18), 5360 (2015); https://doi.org/10.1002/ange.201501193.

R. Guoxin, S.R. Corrie, and H.A. Clark. In vivo biosensing: progress and perspectives. ACS sensors, 2(3), 327 (2017); https://doi.org/10.1021/acssensors.6b00834.

R.S.C., et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. Journal of Physical Chemistry C, 113(43), 18546 (2009); https://doi.org/10.1021/jp905912n.

Y. F., et al. Carbon dots with concentration-dependent photoluminescence properties for quantitative detection of ferric ions. Scientific Reports, 6, 33579 (2016); https://doi.org/10.23860/diss-sun-jiadong-2016.

D. Y., et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. AngewandteChemie International Edition, 51(40), 9751 (2012); https://doi.org/10.1002/anie.201301114.

Y.S.T., et al. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 134(15), 692 (2013); https://doi.org/10.1021/ja904843x.

A. Anoud, A. Fathima, A. H. Alhasan, and E. H. Alsharaeh. PEG coated Fe3O4/RGO nano-cube-like structures for cancer therapy via magnetic hyperthermia. Nanomaterials, 11(9), 2398 (2021); https://doi.org/10.3390/nano11092398.

Z. M., et al. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano, 11(1), 349 (2017); https://doi.org/10.1021/acsnano.6b06267.

Y. Y.et al. Multifunctional theranostic nanoplatform for cancer combined therapy based on a single nano-drug delivery system. ACS Applied Materials & Interfaces, 11(48), 44608 (2019); https://doi.org/10.1002/adhm.201500453.

Qu, D., et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 5(24), 12272 (2013); https://doi.org/10.1039/C3NR04402E.

R.F. Guillermo, J.C. Canga, A.S.J orge, R.Encinar, and J. M. Costa-Fernandez. Functionalized heteroatom-doped carbon dots for biomedical applications: A review. Analytica Chimica Acta 341874 (2023); https://doi.org/10.1016/j.aca.2023.341874.

Li, X., et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Chemical Communications, 48(71), 8930 (2012); https://doi.org/10.1002/adfm.201200166.

Lu, J., et al. Carbon-based quantum dots for photodynamic and photothermal therapy of cancer. Biomaterials Science, 5(9), 1602 (2017); https://doi.org/10.3389/fphar.2018.01401.

Wenfeng Wei, Xiaoyuan Zhang, Shan Zhang, Gang Wei, Zhiqiang Su. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Materials Science and Engineering: C, 104, 109891 (2019); https://doi.org/10.1016/j.msec.2019.109891.

Z. Ming, W.Wang, N. Zhou, P.Yuan, Y. S.Maoni Shao, C. Chi, and F. Pan. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon, 118, 752 (2017); https://doi.org/10.1016/j.carbon.2017.03.085.

D.A. Shiralizadeh, E.Kohan, S. Fateh, N.Alimirzaei, H.Arzaghi, and M. Hamblin. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC advances, 11(4), 2253 (2021); https://doi.org/10.1039/D0RA08041A.

L. Hangqi, and Shuai Gao. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. Journal of Controlled Release, 362, 425 (2023); https://doi.org/10.1016/j.jconrel.2023.08.056.

A Mehran, E. Jabari, and E. Jabbari. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Review of Anti-infective Therapy, 19(1), 35 (2021); https://doi.org/10.1080/14787210.2020.1810569.

B. Kathirvel, H. Garalleh, A. Alalawi, E. Al-Sarayreh, and A. Pugazhendhi. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for cancer therapy. Biochemical Engineering Journal, 192, 108828 (2023); https://doi.org/10.1016/j.bej.2023.108828.

M. Jafar. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 196, 456 (2019); https://doi.org/10.1016/j.talanta.2018.12.042.

G. Vardan. Quantum dots: Perspectives in next-generation chemical gas sensors”‒A review. Analytica Chimica Acta, 1152, 238192 (2021); https://doi.org/10.1016/j.aca.2020.12.067.

Kaur, Inderbir, V. Batra, N. Reddy, B. Simei D.T. Landa, and V. Agarwal. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots. Food Chemistry, 406, 135029. (2023); https://doi.org/10.1016/j.foodchem.2022.135029.

D. Jyoti, G.K. Rao, and D.Vaya. Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. RSC Sustainability, 2(1), 11 (2024); https://doi.org/10.1039/D3SU00375B.

Onat, Erhan, M. Izgi, Ö. Şahin, and C. Saka. Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment. International Journal of Hydrogen Energy, 51, 362 (2024); https://doi.org/10.1016/j.ijhydene.2023.08.176.

J. Xu, et al. Synthesis of nitrogen-doped graphene quantum dots for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2(14), 5415 (2014); https://doi.org/10.1016/j.microc.2023.109830.

Z. L., et al. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 12(2), 492 (2019); https://doi.org/10.1039/C2EE22982J.

Du, X‐Yun, C. Wang, G. Wu, and S.Chen. The rapid and large‐scale production of carbon quantum dots and their integration with polymers. AngewandteChemie International Edition, 60(16), 8585 (2021); http://dx.doi.org/10.1002/ange.202004109.

C. Liu, et al. Nitrogen-doped carbon dots from plant cytoplasm as selective and sensitive fluorescent probes for detecting p-nitrophenol in water. Analytical Chemistry, 88(12), 6637 (2016); https://doi.org/10.1039/C4AN01869A.

L. Qu, & L. Dai, Nitrogen-doped graphene quantum dots: synthesis and functional applications. Materials Today, 19(10), 594 (2016); https://doi.org/10.3390/polym14112153.

S. Yanika, J. Chalitangkoon, and P.Monvisade. Improving the Fluorescence of Carbon Dots Through Boron and Silver Doping: A Single-Step Microwave Synthesis Approach. (2024); https://doi.org/10.33263/BRIAC142.044.

R. Liu, et al. One-step hydrothermal synthesis of nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of mercury ions in living cells. Analytica Chimica Acta, 993, 56 (2017); https://doi.org/10.1016/j.bios.2015.06.050.

Liu, Ze Xi, Bin Bin Chen, Meng Li Liu, Hong Yan Zou, and Cheng Zhi Huang. Cu (i)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions. Green Chemistry, 19 (6), 1494 (2017); https://doi.org/10.1039/C7GC00296C.

S. Farooq, I. Ziani, M. Smith, G. Chugreeva, S. Hashimzada, L.D. Prola, J. Sulejmanović, and E.K. Sher. Carbon quantum dots conjugated with metal hybrid nanoparticles as advanced electrocatalyst for energy applications–A review. Coordination Chemistry Reviews, 500, 215499 (2024); https://doi.org/10.1016/j.ccr.2023.215499.

G. Wensu, S. Zhang, G. Wang, J. Cui, Y, X. Rong, and C. Gao. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis. Ceramics International (2022); https://doi.org/10.1016/j.ceramint.2022.10.116.

Sharma, Sheetal, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, and V. Thakur. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. Journal of Cleaner Production, 228, 755 (2019); https://doi.org/10.1016/j.ceramint.2022.10.116.

Vyas, Yogeshwari, P. Chundawat, D. Dharmendra, P.B. Punjabi, and C. Ameta. Review on hydrogen production photocatalytically using carbon quantum dots: future fuel. International Journal of Hydrogen Energy, 46(75), 37208 (2021); https://doi.org/10.1016/j.ijhydene.2021.09.004.

W. Jiamei, J. Jiang, F. Li, J. Zou, K. Xiang, H. Wang, Y. Li, and X. Li. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chemistry, 25(1), 32 (2023); https://doi.org/10.1039/D2GC03160D.

R. Fazal, A. Hayat, M. Humayun, S.B. Mane, M.B. Faheem, A. Ali, Y. Zhao et al. Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Applied Catalysis B: Environmental, 270, 118867 (2020); https://doi.org/10.1016/j.apcatb.2020.118867.

G. Yun-Nan, Bi-Zhu Shao, J. Mei, W.Yang, D.Zhong, and T.Lu. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Research 15 (1), 551 (2022); https://doi.org/10.1007/s12274-021-3519-4.

Q. Wang, Z. Fang, X. Zhao, C. Dong, Y. Li, C. Guo, Q. Liu, F. Song and W. Zhang, Interfaces, Biotemplated g-C3N4/Au Periodic Hierarchical Structures for the Enhancement of Photocatalytic CO2 Reduction with Localized Surface Plasmon Resonance, ACS Appl. Mater. 13, 59855 (2021); https://doi.org/10.1021/acsami.1c16811.

W. Meng, Q. Liang, J. Han, Y. Tao, D. Liu, C. Zhang, W. Lv, and Q. Yang. Catalyzing polysulfide conversion by gC3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Research, 11, 3480 (2018); https://doi.org/10.1007/s12274-018-2023-y.

W. Qingtong, Z. Fang, X. Zhao, C. Dong, Y. Li, C. Guo, Q.Liu, F. Song, and W. Zhang. Biotemplated g-C3N4/Au periodic hierarchical structures for the enhancement of photocatalytic CO2 reduction with localized surface plasmon resonance. ACS Applied Materials & Interfaces, 13(50), 59855 (2021); https://doi.org/10.1021/acsami.1c16811.

J. Haopeng, X. Li, S. Chen, H. Wang, and P. Huo. g-C3N4 quantum dots-modified mesoporous CeO2 composite photocatalyst for enhanced CO2 photoreduction. Journal of Materials Science: Materials in Electronics, 31 (22), 20495 (2020); https://doi.org/10.1007/s10854-020-04568-0.

W. Yanan, X. Li, Y. Zhang, Y. Yan, P. Huo, and H. Wang. G-C3N4 quantum dots and Au nano particles co-modified CeO2/Fe3O4 micro-flowers photocatalyst for enhanced CO2 photoreduction. Renewable Energy, 179, 756 (2021); https://doi.org/10.1016/j.renene.2021.07.091.

H. Fei, Bicheng Zhu, Bei Cheng, Jiaguo Yu, Wingkei Ho, and Wojciech Macyk. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 272, 119006 (2020); https://doi.org/10.1016/j.apcatb.2020.119006.

M. Que, Y. Zhao, Y. Yang, L. Pan, W. Lei, W. Cai, H. Yuan, J. Chen and G. Zhu. Anchoring of Formamidinium Lead Bromide Quantum Dots on Ti3C2 Nanosheets for Efficient Photocatalytic Reduction of CO2. ACS Appl. Mater. Interfaces, 13, 6180 (2021); https://doi.org/10.1021/acsami.0c18391.

W. Hanmei, R. Zhao, H. Hu, X. Fan, D. Zhang, and D.Wang. 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Applied Materials & Interfaces, 12(36), 40176 (2020); https://doi.org/10.1021/acsami.0c01013.

H. Zhujian, M. Shen, J. Liu, J. Ye, and T. Asefa. Facile synthesis of an effective gC3N4-based catalyst for advanced oxidation processes and degradation of organic compounds. Journal of Materials Chemistry A, 9(26), 14841 (2021); https://doi.org/10.1039/D1TA01325D.

H. Biting, J. He, S. Bian, C. Zhou, Z. Li, F. Xi, J. Liu, and X. Dong. S-doped graphene quantum dots as nanophotocatalyst for visible light degradation. Chinese Chemical Letters, 29(11), 1698 (2018); https://doi.org/10.1016/j.cclet.2018.01.004.

C. Huinan, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C.Li, and H. Dong. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme gC3N4/Bi2WO6 heterojunctions. Catalysis Science & Technology, 8(2), 622 (2018); https://doi.org/10.1039/C7CY01709J.

Y. Ming, F. Zhu, W. Gu, L. Sun, W. Shi, and Y. Hua. Construction of nitrogen-doped graphene quantum dots-BiVO4/gC3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light. Rsc Advances, 6(66), 61162 (2016); https://doi.org/10.1039/C6RA07589D.

L. Xue, Da. Xu, R. Zhao, Y. Xi, L. Zhao, M. Song, H. Zhai, G. Che, and L. Chang. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light. Separation and Purification Technology, 178, 163 (2017); https://doi.org/10.1016/j.seppur.2017.01.020.

L. Chunxue, H. Che, C. Liu, G. Che, P.A. Charpentier, W.Z. Xu, X. Wang, and L. Liu. Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light. Journal of the Taiwan Institute of Chemical Engineers, 95, 669 (2019); https://doi.org/10.1016/j.jtice.2018.10.011.

Z. Ping, B. Jin, Q. Zhang, and R. Peng. Graphitic-C3N4 quantum dots modified FeOOH for photo-Fenton degradation of organic pollutants. Applied Surface Science, 586, 152792 (2022); https://doi.org/10.1016/j.apsusc.2022.152792.

L. Yuhan, K.L, Wingkei H.F. Dong, X. Wu, and Y. Xia. Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst. Applied Catalysis B: Environmental, 202, 611 (2017); https://doi.org/10.1016/j.apcatb.2016.09.055.

C. Yanqing, X. Chen, Y. Xu, Y. Zhang, H. Liu, H. Zhang, and J. Tang. Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives. Carbon Energy, 6(2), e501 (2024); https://doi.org/10.1002/cey2.501.

J. Jizhou, Z. Xiong, H. Wang, G. Liao, S. Bai, J. Zou, P. Wu, P. Zhang, and X. Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. Journal of Materials Science & Technology, 118, 15 (2022); https://doi.org/10.1016/j.jmst.2021.12.018.

Z.J. Ping, L. Wang, J. Luo, Y. Nie, Q. Xing, X. Luo, H. Du, S. Luo, and S.L. Suib. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Applied Catalysis B: Environmental 193, 103 (2016); https://doi.org/10.1016/j.apcatb.2016.04.017.

G. Jacek, J. Lin, Y.C. Li, E. Jokar, C. Chang, C. Peng et al. Sulfur‐doped graphene oxide quantum dots as photocatalysts for hydrogen generation in the aqueous phase. ChemSusChem, 10(16); 3260 (2017); https://doi.org/10.1002/cssc.201700910.

W. Yaping, Y. Li, J. Zhao, J. Wang, and Z. Li. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light. International Journal of Hydrogen Energy, 44(2), 618 (2019); https://doi.org/10.1016/j.ijhydene.2018.11.067.

Z. Zhiling, H. Luo, T. Wang, C. Zhang, M. Liang, D. Yang, M. Liu et al. Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold–silver nanocage heterostructures for antimicrobial applications. Chemistry of Materials, 34(3), 1356 (2022); https://doi.org/10.1021/acs.chemmater.1c03952.

K. Qingquan, X. An, L. Huang, X. Wang, W. Feng, S. Qiu, Q. Wang, and C. Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance. Frontiers of Physics, 16(5), 53506 (2021); https://doi.org/10.1007/s11467-021-1066-9.

Z. Jing, G. Liao, J. Jiang, Z. Xiong, S. Bai, H. Wang, P. Wu, P. Zhang, and X. Li. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chinese Journal of Structural Chemistry, 41(1), 2201025 (2022); https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.

J. Jiang, Y. Zou, Arramel, F. Li, J. Wang, J. Zou and N. Li, 0D/2D MXene quantum dot/Ni-MOF ultrathin nanosheets for enhanced N2 photoreduction. ACS Sustainable Chemistry & Engineering, 8(48), 17791 (2020); https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.

Q. Jiangzhou, Baojun Liu, Kwok-Ho Lam, Shijie Song, Xinyong Li, and Xia Hu. 0D/2D MXene quantum dot/Ni-MOF ultrathin nanosheets for enhanced N2 photoreduction. ACS Sustainable Chemistry & Engineering, 8(48), 17791 (2020); https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.

W. Gao, X. Li, S. Luo, Z. Luo, X. Zhang, R. Huang and M. Luo, Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold–silver nanocage heterostructures for antimicrobial applications. Chemistry of Materials, 34(3) 1356 (2022); https://doi.org/10.1021/acs.chemmater.1c03952.

Z. Zhu, H. Luo, T. Wang, C. Zhang, M. Liang, D. Yang, M. Liu, W. W. Yu, Q. Bai, L. Wang and N. Sui, Chem. Mater., Insights into different dimensional MXenes for photocatalysis. Chemical Engineering Journal, 424, 130340 (2021); https://doi.org/10.1016/j.cej.2021.130340.

K. Zhang, D. Li, H. Cao, Qi. Zhu, C. Trapali, P. Zhu, X. Gao and C. Wang, Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 10(9), 1867 (2021); https://doi.org/10.1039/C2EE22982J.

Y, Hong, J. Liu, H. Li, Yongjian Li, X. Liu, D. Shi, Q. Wu, and Q. Jiao. Graphitic carbon nitride quantum dot decorated three-dimensional graphene as an efficient metal-free electrocatalyst for triiodide reduction. Journal of Materials Chemistry A, 6(14), 5603 (2018); https://doi.org/10.1039/C8TA00205C.

L.S.Y. Shen, W., & G, Z. Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362 (2015); https://doi.org/10.1039/C4CS00269E.

M. Peng, K. Han, Y. Tang, B. Wang, T. Lin, and W. Cheng. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale, 7(5), 1586 (2015); https://doi.org/10.1039/C4NR05712K.

Downloads

Published

2024-08-28

How to Cite

Mathad, S. N., Sangam, S., Bakale, R., & Shirgaonkar, D. B. (2024). Progress unveiled: a comprehensive review on non-toxic carbon-based quantum dots - synthesis, unique properties, and diverse applications. Physics and Chemistry of Solid State, 25(3), 528–539. https://doi.org/10.15330/pcss.25.3.528-539

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)