Ti-rich carboborides in the multi-component high-boron alloy: morphology and elemental distribution

Authors

  • Yu.G. Chabak Pryazovskyi State Technical University, Dnipro, Ukraine; Institute of Materials Research of Slovak Academy of Sciences, Kosice, Slovakia
  • М.А. Golinskyi Pryazovskyi State Technical University, Dnipro, Ukraine
  • V.G. Efremenko Pryazovskyi State Technical University, Dnipro, Ukraine; Institute of Materials Research of Slovak Academy of Sciences, Kosice, Slovakia
  • H. Halfa Central Metallurgical Research and Development Institute, Eltebbin, Helwan, Cairo, Egypt
  • V.І. Zurnadzhy Pryazovskyi State Technical University, Dnipro, Ukraine; Institute of Materials Research of Slovak Academy of Sciences, Kosice, Slovakia
  • B.V. Efremenko Pryazovskyi State Technical University, Dnipro, Ukraine
  • E.V. Tsvetkova Pryazovskyi State Technical University, Dnipro, Ukraine
  • A.V. Dzherenova Pryazovskyi State Technical University, Dnipro, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.707-713

Keywords:

multi-component cast iron, microstructure, EDS, Ti-rich carboboride, duplex inclusion

Abstract

In the article, the characterization of the morphology, chemical composition, and elemental distribution in the Ti-based carboboride M(C,B) in (wt.%) Fe-0.72C-2.75B-5.05W-5.57Mo-10.35Cr-2.60Ti multi-component alloy is fulfilled. The study was performed using optical microscopy, SEM, TEM, and energy-dispersive X-ray spectroscopy. It was found that the carboboride M(C,B) is present in the structure in the form of the equiaxed polygonal particles of a 0.5-7.3 mm mean size. The particles are divided into “duplex” and “uniform” ones. The duplex particles consists of the Ti-rich (75 wt. % Ti) “core” (Ti(C,B)) and the Ti-depleted (47.3 wt. % Ti) “shell” ((Ti,W,Mo,V)(C,B)). The uniform particles are characterized by an even distribution of the elements having a chemical composition close to the “shell”. The ratio of B:C (at. %) is 1:2.5, 1:3.3, and 1:3.2 for the “core”, “shell” and the uniform particle respectively. The chemical formulas of the duplex/uniform M(C,B) inclusions and the mechanism of their formation are proposed.

References

A. E. Karantzalis, Z. Arni, K. Tsirka, A. Evangelou, A. Lekatou, V. Dracopoulos, Fabrication of TiC-Reinforced Composites by Vacuum Arc Melting: TiC Mode of Reprecipitation in Different Molten Metals and Alloys, Journal of Materials Engineering and Performance, 25(8), 12 (2016); https://doi.org/10.1007/s11665-016-2195-0.

Y. Wei, Y. Chen, S. Liang, L. Zhu, Y. Li, L. Jia, Microstructure and Mechanical Properties of TiC Reinforced TZM Composites Prepared by Spark Plasma Sintering, International Journal of Refractory Metals and Hard Materials, 116, 13, 2023; https://doi.org/10.1016/j.ijrmhm.2023.106345.

S. G. Karnaukh, O. E. Markov, L. I. Aliieva, V. V. Kukhar, Designing and Researching of the Equipment for Cutting by Breaking of Rolled Stock, International Journal of Advanced Manufacturing Technology, 109(9-12), 8 (2020); https://doi:10.1007/s00170-020-05824-7.

H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications. (Noyes Publications, Park Ridge, New York, 1996).

R. N. Jia, T. Q. Tu, K. H. Zheng, Z. B. Jiao, Z. C. Luo, Abrasive Wear Behavior of TiC-Strengthened Eutectic High Chromium Cast Iron Composites, Materials Today Communications, 29, 9, (2021); https://doi.org/10.1016/j.mtcomm.2021.102906.

F. V. Guerra-López, A. Bedolla-Jacuinde, C. A. León-Patiño, M. Vázquez-Ramos, The Effect of Small Additions of Nb and Ti on the Sliding Wear Behavior of a Co–30Cr–5Mo Alloy, Wear, 522, 18 (2023); https://doi.org/10.1016/j.wear.2023.204846.

Y. Zhou, Y. L. Yang, Da Li, J. Yang, Y. W. Jiang, X. Ren, Q.-X. Yang, Effect of Titanium Content on Microstructure and Wear Resistance of Fe-Cr-C Hardfacing Layers, Welding Journal, 91(8), 8 (2012).

T. V. Loskutova, I. S. Pogrebova, V. G. Khyzhnyak, M. M. Bobina, N. S. Nikitina, Protective Properties of a New Type Coatings Involving Titanium, Chromium, Aluminum, Materials Today: Proceedings, 6, 10 (2019); https://doi.org/10.1016/j.matpr.2018.10.095.

Y. Chabak, V. Efremenko, V. Zurnadzhy, V. Puchý, I. Petryshynets, B. Efremenko, V. Fedun, K. Shimizu, I. Bogomol, V. Kulyk, D. Jakubéczyová, Structural and Tribological Studies of “(TiC+WC)/Hardened Steel” PMMC Coating Deposited by Air Pulsed Plasma, Metals, 12 (2), 24 (2022); https://doi.org/10.3390/met12020218.

V. V. Kulyk, Z. A. Duriagina, B. D. Vasyliv, Effects of Yttria Content and Sintering Temperature on the Microstructure and Tendency to Brittle Fracture of Yttria-Stabilized Zirconia. Archives of Materials Science and Engineering, 109(2), 15 (2021); https://doi.org/10.5604/01.3001.0015.2625.

Y. Zhang, R. Song, Y. Pei, E. Wen, Z. Zhao, The Formation of TiC–NbC Core-Shell Structure in Hypereutectic High Chromium Cast Iron Leads to Significant Refinement of Primary M7C3, Journal of Alloys and Compounds, 824, 10 (2020); https://doi.org/10.1016/j.jallcom.2020.153806.

X. Wu, J. Xing, H. Fu, X. Zhi, Effect of Titanium on the Morphology of Primary M7C3 Carbides in Hypereutectic High Chromium White Iron, Materials Science and Engineering: A, 457, (1–2), 6 (2007); https://doi.org/10.1016/j.msea.2006.12.006.

M. O. Vasylyev, S. I. Sidorenko, S. M. Voloshko, T. Ishikawa, Effect of Low-Energy Inert-Gas Ion Bombardment of the Metal Surface on the Oxygen Adsorption and Oxidation, Uspehi Fiziki Metallov, 17 (3), 20 (2016); https://doi.org/10.15407/ufm.17.03.209.

A. Bedolla-Jacuinde, R. Correa, J. G. Quezada, C. Maldonado, Effect of Titanium on the As-Cast Microstructure of a 16% Chromium White Iron, Materials Science and Engineering: A, 398 (1–2), 12 (2005); https://doi.org/10.1016/j.msea.2005.03.072.

Y. Liu, B. Li, J. Li, L. He, S. Gao, T. G. Nieh, Effect of Titanium on the Ductilization of Fe–B Alloys with High Boron Content, Materials Letters, 64 (11), 3 (2010); https://doi.org/10.1016/j.matlet.2010.03.013.

X. Shi, Y. Jiang, R. Zhou, Effects of Rare Earth, Titanium, and Magnesium Additions on Microstructures and Properties of High-boron Medium-carbon Alloy, Journal of Iron and Steel Research International, 23, 8 (2016); https://doi.org/10.1016/S1006-706X(16)30180-7.

X. Ren, S. Tang, H. Fu, J. Xing, Effect of Titanium Modification on Microstructure and Impact Toughness of High-Boron Multi-Component Alloy, Metals, 11(2), 15 (2021); https://doi.org/10.3390/met11020193.

X. Yao, J. Ji, Y. Lin, Y. Sun, L. Wang, A. He, B. Wang, P. Lu, M. He, X. Zhang, TMB2C (TM = Ti, V): 2D Transition Metal Borocarbide Monolayer with Intriguing Electronic, Magnetic and Electrochemical Properties, Applied Surface Science, 605, 154692 (2022); https://doi.org/10.1016/j.apsusc.2022.154692.

D. Liu, R. Liu, Y. Wei, Y. Ma, K. Zhu, Microstructure and Wear Properties of Fe–15Cr–2.5Ti–2C–xBwt.% Hardfacing Alloys, Applied Surface Science, 271, 7 (2013); https://doi.org/10.1016/j.apsusc.2013.01.169.

Y. Zhang, K. Shimizu, X. Yaer, K. Kusumoto, V. G. Efremenko, Erosive Wear Performance of Heat Treated Multi-Component Cast Iron Containing Cr, V, Mn and Ni Eroded by Alumina Spheres at Elevated Temperatures, Wear, 390-391, 11 (2017); https://doi.org/10.1016/j.wear.2017.07.017.

Yu. G. Chabak, K. Shimizu, V. G. Efremenko, M. A. Golinskyi, K. Kusumoto, V. I. Zurnadzhy, A. V. Efremenko, Microstructure and Phase Elemental Distribution in High-Boron Multi-Component Cast Irons, International Journal of Minerals, Metallurgy, and Materials, 29 (1), 10 (2022); https://doi.org/10.1007/s12613-020-2135-8.

V. G. Efremenko, Yu. G. Chabak, K. Shimizu, M. A. Golinskyi, A. G. Lekatou, I. Petryshynets, B. V. Efremenko, H. Halfa, K. Kusumoto, V. I. Zurnadzhy, The Novel Hybrid Concept on Designing Advanced Multi-Component Cast Irons: Effect of Boron and Titanium (Thermodynamic Modelling, Microstructure and Mechanical Property Evaluation), Materials Characterization, 197, 112691, (2023); https://doi.org/10.1016/j.matchar.2023.112691.

Yu. G. Chabak, М. А. Golinskyi, V. G. Efremenko, К. Shimizu, H. Halfa, V. І. Zurnadzhy, B. V. Efremenko, Т.М. Kovbasiuk, Phase Constituents Modeling in Hybrid Multi-Component High-Boron Alloy, Physics and Chemistry of Solid State, 23(4), 6 (2022); https://doi.org/10.15330/pcss.23.4.714-719.

О. V. Sukhova, V. А. Polonskyy, Structure and Corrosion of Quasicrystalline Cast Al–Co–Ni and Al–Fe–Ni Alloys in Aqueous NaCl Solution, East European Journal of Physics, 3, 6 (2020); https://doi.org/10.26565/2312-4334-2020-3-01.

Yu. G. Chabak, V. G. Efremenko, Change of Secondary-Carbides’ Nanostate in 14.5% Cr Cast Iron at High-Temperature Heating, Metallofizika i Noveishie Tekhnologii, 34, 16 (2012).

Published

2023-12-16

How to Cite

Chabak, Y., Golinskyi М., Efremenko, V., Halfa, H., Zurnadzhy, V., Efremenko, B., … Dzherenova, A. (2023). Ti-rich carboborides in the multi-component high-boron alloy: morphology and elemental distribution. Physics and Chemistry of Solid State, 24(4), 707–713. https://doi.org/10.15330/pcss.24.4.707-713

Issue

Section

Scientific articles (Technology)

Most read articles by the same author(s)