Ti-rich carboborides in the multi-component high-boron alloy: morphology and elemental distribution
DOI:
https://doi.org/10.15330/pcss.24.4.707-713Keywords:
multi-component cast iron, microstructure, EDS, Ti-rich carboboride, duplex inclusionAbstract
In the article, the characterization of the morphology, chemical composition, and elemental distribution in the Ti-based carboboride M(C,B) in (wt.%) Fe-0.72C-2.75B-5.05W-5.57Mo-10.35Cr-2.60Ti multi-component alloy is fulfilled. The study was performed using optical microscopy, SEM, TEM, and energy-dispersive X-ray spectroscopy. It was found that the carboboride M(C,B) is present in the structure in the form of the equiaxed polygonal particles of a 0.5-7.3 mm mean size. The particles are divided into “duplex” and “uniform” ones. The duplex particles consists of the Ti-rich (75 wt. % Ti) “core” (Ti(C,B)) and the Ti-depleted (47.3 wt. % Ti) “shell” ((Ti,W,Mo,V)(C,B)). The uniform particles are characterized by an even distribution of the elements having a chemical composition close to the “shell”. The ratio of B:C (at. %) is 1:2.5, 1:3.3, and 1:3.2 for the “core”, “shell” and the uniform particle respectively. The chemical formulas of the duplex/uniform M(C,B) inclusions and the mechanism of their formation are proposed.
References
A. E. Karantzalis, Z. Arni, K. Tsirka, A. Evangelou, A. Lekatou, V. Dracopoulos, Fabrication of TiC-Reinforced Composites by Vacuum Arc Melting: TiC Mode of Reprecipitation in Different Molten Metals and Alloys, Journal of Materials Engineering and Performance, 25(8), 12 (2016); https://doi.org/10.1007/s11665-016-2195-0.
Y. Wei, Y. Chen, S. Liang, L. Zhu, Y. Li, L. Jia, Microstructure and Mechanical Properties of TiC Reinforced TZM Composites Prepared by Spark Plasma Sintering, International Journal of Refractory Metals and Hard Materials, 116, 13, 2023; https://doi.org/10.1016/j.ijrmhm.2023.106345.
S. G. Karnaukh, O. E. Markov, L. I. Aliieva, V. V. Kukhar, Designing and Researching of the Equipment for Cutting by Breaking of Rolled Stock, International Journal of Advanced Manufacturing Technology, 109(9-12), 8 (2020); https://doi:10.1007/s00170-020-05824-7.
H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications. (Noyes Publications, Park Ridge, New York, 1996).
R. N. Jia, T. Q. Tu, K. H. Zheng, Z. B. Jiao, Z. C. Luo, Abrasive Wear Behavior of TiC-Strengthened Eutectic High Chromium Cast Iron Composites, Materials Today Communications, 29, 9, (2021); https://doi.org/10.1016/j.mtcomm.2021.102906.
F. V. Guerra-López, A. Bedolla-Jacuinde, C. A. León-Patiño, M. Vázquez-Ramos, The Effect of Small Additions of Nb and Ti on the Sliding Wear Behavior of a Co–30Cr–5Mo Alloy, Wear, 522, 18 (2023); https://doi.org/10.1016/j.wear.2023.204846.
Y. Zhou, Y. L. Yang, Da Li, J. Yang, Y. W. Jiang, X. Ren, Q.-X. Yang, Effect of Titanium Content on Microstructure and Wear Resistance of Fe-Cr-C Hardfacing Layers, Welding Journal, 91(8), 8 (2012).
T. V. Loskutova, I. S. Pogrebova, V. G. Khyzhnyak, M. M. Bobina, N. S. Nikitina, Protective Properties of a New Type Coatings Involving Titanium, Chromium, Aluminum, Materials Today: Proceedings, 6, 10 (2019); https://doi.org/10.1016/j.matpr.2018.10.095.
Y. Chabak, V. Efremenko, V. Zurnadzhy, V. Puchý, I. Petryshynets, B. Efremenko, V. Fedun, K. Shimizu, I. Bogomol, V. Kulyk, D. Jakubéczyová, Structural and Tribological Studies of “(TiC+WC)/Hardened Steel” PMMC Coating Deposited by Air Pulsed Plasma, Metals, 12 (2), 24 (2022); https://doi.org/10.3390/met12020218.
V. V. Kulyk, Z. A. Duriagina, B. D. Vasyliv, Effects of Yttria Content and Sintering Temperature on the Microstructure and Tendency to Brittle Fracture of Yttria-Stabilized Zirconia. Archives of Materials Science and Engineering, 109(2), 15 (2021); https://doi.org/10.5604/01.3001.0015.2625.
Y. Zhang, R. Song, Y. Pei, E. Wen, Z. Zhao, The Formation of TiC–NbC Core-Shell Structure in Hypereutectic High Chromium Cast Iron Leads to Significant Refinement of Primary M7C3, Journal of Alloys and Compounds, 824, 10 (2020); https://doi.org/10.1016/j.jallcom.2020.153806.
X. Wu, J. Xing, H. Fu, X. Zhi, Effect of Titanium on the Morphology of Primary M7C3 Carbides in Hypereutectic High Chromium White Iron, Materials Science and Engineering: A, 457, (1–2), 6 (2007); https://doi.org/10.1016/j.msea.2006.12.006.
M. O. Vasylyev, S. I. Sidorenko, S. M. Voloshko, T. Ishikawa, Effect of Low-Energy Inert-Gas Ion Bombardment of the Metal Surface on the Oxygen Adsorption and Oxidation, Uspehi Fiziki Metallov, 17 (3), 20 (2016); https://doi.org/10.15407/ufm.17.03.209.
A. Bedolla-Jacuinde, R. Correa, J. G. Quezada, C. Maldonado, Effect of Titanium on the As-Cast Microstructure of a 16% Chromium White Iron, Materials Science and Engineering: A, 398 (1–2), 12 (2005); https://doi.org/10.1016/j.msea.2005.03.072.
Y. Liu, B. Li, J. Li, L. He, S. Gao, T. G. Nieh, Effect of Titanium on the Ductilization of Fe–B Alloys with High Boron Content, Materials Letters, 64 (11), 3 (2010); https://doi.org/10.1016/j.matlet.2010.03.013.
X. Shi, Y. Jiang, R. Zhou, Effects of Rare Earth, Titanium, and Magnesium Additions on Microstructures and Properties of High-boron Medium-carbon Alloy, Journal of Iron and Steel Research International, 23, 8 (2016); https://doi.org/10.1016/S1006-706X(16)30180-7.
X. Ren, S. Tang, H. Fu, J. Xing, Effect of Titanium Modification on Microstructure and Impact Toughness of High-Boron Multi-Component Alloy, Metals, 11(2), 15 (2021); https://doi.org/10.3390/met11020193.
X. Yao, J. Ji, Y. Lin, Y. Sun, L. Wang, A. He, B. Wang, P. Lu, M. He, X. Zhang, TMB2C (TM = Ti, V): 2D Transition Metal Borocarbide Monolayer with Intriguing Electronic, Magnetic and Electrochemical Properties, Applied Surface Science, 605, 154692 (2022); https://doi.org/10.1016/j.apsusc.2022.154692.
D. Liu, R. Liu, Y. Wei, Y. Ma, K. Zhu, Microstructure and Wear Properties of Fe–15Cr–2.5Ti–2C–xBwt.% Hardfacing Alloys, Applied Surface Science, 271, 7 (2013); https://doi.org/10.1016/j.apsusc.2013.01.169.
Y. Zhang, K. Shimizu, X. Yaer, K. Kusumoto, V. G. Efremenko, Erosive Wear Performance of Heat Treated Multi-Component Cast Iron Containing Cr, V, Mn and Ni Eroded by Alumina Spheres at Elevated Temperatures, Wear, 390-391, 11 (2017); https://doi.org/10.1016/j.wear.2017.07.017.
Yu. G. Chabak, K. Shimizu, V. G. Efremenko, M. A. Golinskyi, K. Kusumoto, V. I. Zurnadzhy, A. V. Efremenko, Microstructure and Phase Elemental Distribution in High-Boron Multi-Component Cast Irons, International Journal of Minerals, Metallurgy, and Materials, 29 (1), 10 (2022); https://doi.org/10.1007/s12613-020-2135-8.
V. G. Efremenko, Yu. G. Chabak, K. Shimizu, M. A. Golinskyi, A. G. Lekatou, I. Petryshynets, B. V. Efremenko, H. Halfa, K. Kusumoto, V. I. Zurnadzhy, The Novel Hybrid Concept on Designing Advanced Multi-Component Cast Irons: Effect of Boron and Titanium (Thermodynamic Modelling, Microstructure and Mechanical Property Evaluation), Materials Characterization, 197, 112691, (2023); https://doi.org/10.1016/j.matchar.2023.112691.
Yu. G. Chabak, М. А. Golinskyi, V. G. Efremenko, К. Shimizu, H. Halfa, V. І. Zurnadzhy, B. V. Efremenko, Т.М. Kovbasiuk, Phase Constituents Modeling in Hybrid Multi-Component High-Boron Alloy, Physics and Chemistry of Solid State, 23(4), 6 (2022); https://doi.org/10.15330/pcss.23.4.714-719.
О. V. Sukhova, V. А. Polonskyy, Structure and Corrosion of Quasicrystalline Cast Al–Co–Ni and Al–Fe–Ni Alloys in Aqueous NaCl Solution, East European Journal of Physics, 3, 6 (2020); https://doi.org/10.26565/2312-4334-2020-3-01.
Yu. G. Chabak, V. G. Efremenko, Change of Secondary-Carbides’ Nanostate in 14.5% Cr Cast Iron at High-Temperature Heating, Metallofizika i Noveishie Tekhnologii, 34, 16 (2012).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yu.G. Chabak, М.А. Golinskyi, V.G. Efremenko, H. Halfa, V.І. Zurnadzhy, B.V. Efremenko, E.V. Tsvetkova, A.V. Dzherenova
This work is licensed under a Creative Commons Attribution 3.0 Unported License.