Removal of Cr (III) and Cr (VI) ions by adsorbent based on Titanium Dioxide

Authors

  • I. Mironyuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • H. Vasylyeva Uzhhorod National University, Uzhhorod, Ukraine
  • I. Mykytyn Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • A. Zavilopulo Institute of Electron Physics of the National Academy of Sciences of Ukraine, Uzhhorod, Ukraine
  • O. Vasyliev Institute of Electron Physics of the National Academy of Sciences of Ukraine, Uzhhorod, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.441-452

Keywords:

chromium (III), chromium (VI), Raman spectroscopy, XRF-analysis, adsorption

Abstract

In this paper, the adsorption of trivalent chromium cations by a sample of sodium-modified TiO2 was studied. XRF analysis of the TiO2 surface was performed.  The dependence of the adsorption value on the duration of the interaction in the system of the adsorbent–solution of chromium compound was investigated. The influence of the acidity of the solution and the equilibrium concentration of chromium ions on the adsorption value was also determined. It is shown that the adsorption kinetics of trivalent chromium ions is best described by the pseudo-second-order equation and the diffusion kinetic model. Freundlich's adsorption theory best describes equilibrium adsorption. Mass spectrometry proved the enhanced adsorption of trivalent chromium ions from a mixture with hexavalent chromium. This statement was evidenced by Raman spectroscopy of the surface of Na-TiO2. The maximum adsorption of Cr (III) ions is 62 mg/g. The separation factor of trivalent chromium and hexavalent chromium is 7.279

References

Md. Aminul Islam, Michael J. Angove, David W. Morton. Recent innovative research on chromium (VI) adsorption mechanism, Environmental Nanotechnology, Monitoring & Management, 12, 100267 (2019); https://doi.org/10.1016/j.enmm.2019.100267.

Yang Mei, Ren-Ming Peng, Wen-Chen Zheng, Cheng-Fu Wei, Unified calculation of optical and EPR spectral data for Cr3+-doped KAl (MoO4)2 crystal, Optical Materials, 39, 232 (2015); https://doi.org/10.1016/j.optmat.2014.11.032.

G.L. Gutsev, P. Jena. Hua-Jin Zhai, Lai-Sheng Wang. Electronic structure of chromium oxides, CrOn - and CrOn (n=1-5) from photoelectron spectroscopy and density functional theory calculations, Chem. Phys. 115, 7935 (2001); https://doi.org/10.1063/1.1405438.

J. Dai, F. Ren, C. Tao. Adsorption of Cr (VI) and speciation of Cr (VI) and Cr (III) in aqueous solutions using chemically modified chitosan. Int J Environ Res Public Health. 9(5), 1757 (2012); https://doi.org/10.3390/ijerph9051757.

R. El K. Billah, A. Shekhawat, S. Mansouri, H. Majdoubi, M. Agunaou, A. Soufiane, R. Jugade. Adsorptive removal of Cr(VI) by Chitosan-SiO2-TiO2 nanocomposite. Environmental Nanotechnology, Monitoring & Management, 18, 100695 (2022); https://doi.org/10.1016/j.enmm.2022.100695.

S. Intachai, M. Na Nakorn, A. Kaewnok, P. Pankam, P. Sumanatrakul, N. Khaorapapong. Versatile inorganic adsorbent for efficient and practical removal of hexavalent chromium in water. Materials Chemistry and Physics, 288, 126388 (2022); https://doi.org/10.1016/j.matchemphys.2022.126388.

E.-H. Jang, S. P. Pack, I. Kim, S. Chung. A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Sci. Rep., 10, 5558 (2020); https://doi.org/10.1038/s41598-020-61505-1.

R. Sharma, D. Kumar. Adsorption of Cr (III) and Cu (II) on hydrothermally synthesized graphene oxide-calcium-zinc nanocomposite, J. Chem. Eng. Data, 63(12), 4560 (2018); https://doi.org/10.1021/acs.jced.8b00637.

T. Tatarchuk, I. Mironyuk, V. Kotsyubynsky, A. Shyichuk, M. Myslin, V. Boychuk. Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core. Journal of Molecular Liquids, 297, 111757 (2020); https://doi.org/10.1016/j.molliq.2019.111757.

E. Ben Khalifa, B. Rzig, R. Chakroun, H. Nouagui, B. Hamrouni. Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemometrics and Intelligent Laboratory Systems, 189, 18 (2019); https://doi.org/10.1016/j.chemolab.2019.03.014.

S. Yao, A. Zhang, Zh. Liu, Y. Li, Y. Fu, W. Chi. Biomass-assisted synthesis of long-rod TiO2 with oxygen vacancies active sites and biomass carbon for efficient photocatalytic reduction of Cr(VI) under visible light, Surfaces, and Interfaces, 46, 104110 (2024); https://doi.org/10.1016/j.surfin.2024.104110.

X. Chen, X. Dai, R. Xie, J. Li, A. Khayambashi, L. Xu, C. Yang, N. Shen, Y. Wang, L. He, Y. Zhang,

Ch. Xiao, Zh. Chai, Sh. Wang. Chromate separation by selective crystallization. Chinese Chemical Letters, 31(7) 1974 (2020); https://doi.org/10.1016/j.cclet.2019.11.034.

H. Vasylyeva, I. Mironyuk, M. Strilchuk, K. Mayer, L. Dallas, V. Tryshyn, I. Maliuk, M. Hryhorenko,

O. Zhukov, Kh. Savka. Age dating of liquid 90Sr–90Y sources. Applied Radiation and Isotopes, 200, 110906 (2023); https://doi.org/10.1016/j.apradiso.2023.110906.

I. Mironyuk, I. Mykytyn, H. Vasylyeva, Kh. Savka. Sodium-modified mesoporous TiO2: sol-gel synthesis, characterization, and adsorption activity toward heavy metal cations. Journal of Molecular Liquids, 316(10), 113840 (2020); https://www.doi.org/10.1016/j.molliq.2020.113840.

I. Mironyuk, H. Vasylyeva, I. Mykytyn, Kh. Savka, A. Gomonai, A. Zavilopulo, O. Vasyliev. Adsorption of yttrium by the sodium-modified titanium dioxide: kinetic, equilibrium studies and investigation of Na-TiO2 radiation resistance. Inorganic Chemistry Communications, 156, 111289 (2023), https://www.doi.org/10.1016/j.inoche.2023.111289.

G. Schwarzenbach H.A. Flaschka, Complexometric titrations. (Translated [from German] and rev. in collaboration with the authors by H.M.N.H. Irving, (London, Methuen, 1969). P. 490. ISBN: 0416192904 9780416192902.

A. Zavilopulo, O. Shpenik, A. Agafonova. Electron impact ionization of gas-phase guanine near the threshold. J. Phys. B., 42, 1 (2009); http://www.doi.org/10.1088/0953-4075/42/2/025101.

X. Feng, Y. Lin, L. Gan, et al. Enhancement of Mass Transfer Process for Photocatalytic Reduction in Cr(VI) by Electric Field Assistance. Int. J. Mol. Sci., 25, 2832 (2024); https://doi.org/10.3390/ijms25052832.

I. Mironyuk, T. Tatarchuk, Mu. Naushad, H. Vasylyeva, I. Mykytyn. Highly Efficient Adsorption Of Strontium Ions By Carbonated Mesoporous TiO2. Journal of Molecular Liquids, 285, 742 (2019); https://www.doi.org/10.1016/j.molliq.2019.04.111.

W. Plazinski, W. Rudzinski, A. Plazinska. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Advances in Colloid and Interface Science, 152(1-2), 2 (2009); https://doi.org/10.1016/j.cis.2009.07.009.

H.N. Tran, S-J. You, A. Hosseini-Bandegharaei, H-P. Chao, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res., 120, 88 (2017); https://doi.org/10.1016/j.watres.2017.04.014.

F.-Ch. Wu, R.-L. Tseng, R.-Sh. Juang, Characteristics of the Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal. 150(2-3), 366 (2009); https://doi.org/10.1016/j.cej.2009.01.014.

Kh. H. Chu. Revisiting the Temkin Isotherm: Dimensional Inconsistency and Approximate Forms. Ind. Eng. Chem. Res., 60(35), 13140 (2021); https://doi.org/10.1021/acs.iecr.1c01788.

H. Kołoczek, J. Chwastowski, W. Żukowski. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewater. Environ Sci Pollut Res., 23, 527 (2016); https://www.doi.org/10.1007/s11356-015-5285-x.

S. Kazim, M. Alì, S. Palleschi, G. D’Olimpio, D. Mastrippolito, A. Politano, R. Gunnella, A. Di Cicco,

M. Renzelli, G. Moccia, O.A. Cacioppo, R. Alfonsetti, J. Strychalska-Nowak, T. Klimczuk,

R. Cava. Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3. Nanotechnology, 31(39), 395706 (2020); doi:10.1088/1361-6528/ab7de6.

By Smokefoot - Own work, CC BY-SA4.0. https://commons.wikimedia.org/w/index.php?curid=45104808.

Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases Geological Survey of Japan Open-File Report, 419, (2005).

IAEA Database. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.

National Center for Biotechnology Information. PubChem Compound Summary for CID 104957, Chromium (III) chloride hexahydrate, (2024); https://pubchem.ncbi.nlm.nih.gov/compound/Chromium_III_-chloride-hexahydrate.

L. Scrimieri, L. Velardi, A. Serra, D. Manno, F. Ferrari, M. Cantarella, L. Calcagnile. Enhanced adsorption capacity of porous titanium dioxide nanoparticles synthesized in alkaline sol. Applied Physics A, 126, 926 (2020); https://doi.org/10.1007/s00339-020-04103-2.

G. Serghiou, C. Guillaume. Stability of K2CrO4 to 50 GPa using Raman spectroscopy measurements. Journal of Solid State Chemistry, 177, 4672 (2004); https://www.doi.org/10.1016/j.jssc.2004.07.021.

X. Qi, H. Cai, X. Zhang, J. Ouyang, D. Lu, X. Guo, Sh. Jia. CdS quantum dots/nano-TiO2 incorporated wood as a long-term stable and easily separable photocatalytic adsorbent for efficient Cr(VI) removal. Chemical Engineering Journalk 475, 146320 (2023); https://doi.org/10.1016/j.cej.2023.146320.

J. Zhao, R. Boada, G. Cibin, C. Palet. Enhancement of selective adsorption of Cr species via modification of pine biomass. Science of The Total Environment, 756, 143816 (2021); https://doi.org/10.1016/j.scitotenv.2020.143816.

O. Abuzalat, D. Wong, M.A. Elsayed. Nano-porous composites of activated carbon-metal organic frameworks (Fe-BDC@AC) for rapid removal of Cr (VI): Synthesis, adsorption, mechanism, and kinetics studies. J. Inorg. Organomet. Polym. Mater., 32, 1924 (2022).

D. Zhou, J. Wang, H. Chen, X. Ge, X. Wang. Enhanced Cr (VI) removal by hierarchical CoFe2O4@SiO2 -NH2 via reduction and adsorption processes. New J. Chem. 46, 13686 (2022).

X. Wang, J. Lu, B. Cao, X. Liu, Zh. Lin, C. Yang, R. Wu, X. Su, X. Wang. Facile synthesis of recycling Fe3O4/graphene adsorbents with potassium humate for Cr(VI) removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 384 (2019); https://doi.org/10.1016/j.colsurfa.2018.10.036.

Dezhi Qi (Chapter 3 - Theory of Countercurrent Extraction, Editor(s): Dezhi Qi, Hydrometallurgy of Rare Earths, Elsevier, 2018, 391-532, ISBN 9780128139202; https://doi.org/10.1016/B978-0-12-813920-2.00003-9).

Downloads

Published

2024-08-16

How to Cite

Mironyuk, I., Vasylyeva, H., Mykytyn, I., Zavilopulo, A., & Vasyliev, O. (2024). Removal of Cr (III) and Cr (VI) ions by adsorbent based on Titanium Dioxide. Physics and Chemistry of Solid State, 25(3), 441–452. https://doi.org/10.15330/pcss.25.3.441-452

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)