Comprehensive study on physicochemical properties of materials based on titanium suboxides

Authors

  • Alexander Velichenko Department of Physical Chemistry, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
  • Valentina Knysh Department of Physical Chemistry, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
  • Olesia Shmychkova Department of Physical Chemistry, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
  • Tatiana Luk’yanenko Department of Physical Chemistry, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
  • Svitlana Pukas Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Lviv, Ukraine
  • Pavlo Demchenko Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Lviv, Ukraine
  • Vasyl Kordan Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Lviv, Ukraine
  • Roman Gladyshevskii Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.617-625

Keywords:

nanotubes, titanium dioxide, platinum group metals, morphology, physico-chemical properties

Abstract

This study focuses on the surface structures and microstructural changes of titanium dioxide nanotubes, when electrochemically coated with platinum and/or palladium. Ti samples anodized in a fluorine-containing electrolyte exhibit self-organized nanotubes of varying diameters with open pores. Annealing at 773 K led to compaction of the porous layer, the formation of cracks, and the appearance of corrugation in the nanotubes. The deposition of platinum produced a transition from a nanotubular surface structure to a microcrystalline structure consisting of rutile crystallites. The palladium-coated samples showed fused blocks characteristic of titanium suboxides. The tubular structure was preserved, even after crystallization. SEM images revealed a comb-like pattern in coatings with varying metal content. XRPD analysis confirmed the presence of anatase and elemental titanium. PdO was detected on the surface of the thermally treated samples. For samples co-treated with Pd and Pt, mutual diffusion of the two metals took place during the heat treatment. The findings reveal surface characteristics, metal deposition effects, and phase composition of titania nanotubes, providing valuable insights for further research.

References

C. Wang, M. Wang, K. Xie, Q. Wu, L. Sun, Z. Lin, C. Lin, Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization, Nanotechnology, 22(30), 305607 (2011); https://doi.org/10.1088/0957-4484/22/30/305607.

K. Inoue, A. Matsuda, G. Kawamura, Tube length optimization of titania nanotube array for efficient photoelectrochemical water splitting, Scientific Reports, 13, 103 (2023); https://doi.org/10.1038/s41598-022-27278-5.

H. Martinez, J. Neira, A. A. Amaya, E. A. Páez-Mozo, F. Martinez Ortega, Selective photooxidation of valencene and thymol with nano-TiO2 and O2 as oxidant, Molecules, 28(9), 3868 (2023); https://doi.org/10.3390/molecules28093868.

G. Cha, S. Ozkan, I. Hwang, A. Mazare, P. Schmuki, Li+ doped anodic TiO2 nanotubes for enhanced efficiency of dye-sensitized solar cells, Surface Science, 718, 122012 (2022); https://doi.org/10.1016/j.susc.2021.122012.

J. Park, S. Kim, G. Lee, J. Choi, RGO-coated TiO2 microcones for high-rate lithium-ion batteries, ACS Omega, 3(8), 10205 (2018); https://doi.org/10.1021/acsomega.8b00926.

H. Yoo, G. Lee, J. Choi, Binder-free SnO2-TiO2 composite anode with high durability for lithium-ion batteries, RSC Advances, 9, 6589 (2019); https://doi.org/10.1039/C8RA10358E.

Y.-T. Kim, J. H. Youk, J. Choi, Inverse-direction growth of TiO2 microcones by subsequent anodization in HClO4 for increased performance of lithium-ion batteries, ChemElectroChem, 7(5), 1057 (2020); https://doi.org/10.1002/celc.202000114.

N. Rodriguez-Barajas, U. de Jesús Martin-Camacho, A. Pérez-Larios, Mechanisms of metallic nanomaterials to induce an antibacterial effect, Current Topics in Medicinal Chemistry, 22(30), 2506 (2022); http://dx.doi.org/10.2174/1568026622666220919124104.

K. M. Chahrour, P. C. Ooi, A. M. Eid, A. Abdel Nazeer, M. Madkour, C. F. Dee, M. F. M. R. Wee, A. A. Hamzah, Synergistic effect of bi-phased and self-doped Ti+3 on anodic TiO2 nanotubes photoelectrode for photoelectrochemical sensing, Journal of Alloys and Compounds, 900, 163496 (2022); https://doi.org/10.1016/j.jallcom.2021.163496.

O. I. Kasian, T. V. Luk’yanenko, P. Yu. Demchenko, R. E. Gladyshevskii, R. Amadelli, A. B. Velichenko, Electrochemical properties of thermally treated platinized Ebonex® with low content of Pt, Electrochimica Acta, 109, 630 (2013); https://doi.org/10.1016/j.electacta.2013.07.162.

M. Cerro-Lopez, Y. Meas-Vong, M. A. Mendez-Rojas, C. A. Martínez-Huitle, M. A. Quiroz, Formation and growth of PbO2 inside TiO2 nanotubes for environmental applications, Applied Catalysis B: Environment and Energy, B, 144, 174 (2014); https://doi.org/10.1016/j.apcatb.2013.07.018.

V. Knysh, O. Shmychkova, T. Luk’yanenko, A. Velichenko, Template synthesis for the creation of photo- and electrocatalysts, Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 86 (2023); https://doi.org/10.32434/0321-4095-2023-148-3-86-93.

M. Wtulich, M. Szkoda, G. Gajowiec, M. Gazda, K. Jurak, M. Sawczak, A. Lisowska-Oleksiak, Hydrothermal cobalt doping of titanium dioxide nanotubes towards photoanode activity enhancement, Materials, 14, 1507 (2021); https://doi.org/10.3390/ma14061507.

F. Riboni, N. T. Nguyen, S. So, P. Schmuki, Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties, Nanoscale Horizons, 1, 445 (2016); https://doi.org/10.1039/C6NH00054A.

J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: selforganized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science, 11(1/2), 3 (2007); https://doi.org/10.1016/j.cossms.2007.08.004.

O. Shmychkova, D. Girenko, A. Velichenko, Noble metals doped tin dioxide for sodium hypochlorite synthesis from low concentrated NaCl solutions, Journal Chemical Technology and Biotechnology, 97(4), 903 (2022); https://doi.org/10.1002/jctb.6973.

W. Kraus, G. Nolze, POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, Journal of Applied Crystallography, 29, 301 (1996).

The Rietveld Method. IUCr Monographs on Crystallography, Ed. R. A. Young (University Press, Oxford 1995).

J. Rodriguez-Carvajal, Recent developments of the Program FULLPROF in Commission on Powder Diffraction (IUCr), Newsletter, 26, 12 (2001).

J. Rodriguez-Carvajal, T. Roisnel, Line broadening analysis using FullProf: determination of microstructural properties, Materials Science Forum, 443-444, 123 (2004); https://doi.org/10.4028/www.scientific.net/MSF.443-444.123.

A. Velichenko, V. Kordan, O. Shmychkova, V. Knysh, P. Demchenko, The effect of Ti/TiO2 treatment on morphology, phase composition and semiconductor properties, Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 18 (2022); https://doi.org/10.32434/0321-4095-2022-143-4-18-23.

O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, Journal of Materials Research, 18, 156 (2003); https://doi.org/10.1557/JMR.2003.0022.

G. Qi, X. Wang, J. Zhao, Ch. Song, Y. Zhang, F. Ren, N. Zhang, Fabrication and characterization of the porous Ti4O7 reactive electrochemical membrane, Frontiers in Chemistry, 9, 833024 (2021); https://doi.org/10.3389/fchem.2021.833024.

D. P. S. Palma, R. Z. Nakazato, E. N. Codaro, H. A. Acciari, Morphological and structural variations in anodic films grown on polished and electropolished titanium substrates, Materials Research, 22, 1 (2019); https://doi.org/10.1590/1980-5373-MR-2019-0362.

A. Mazzarolo, M. Curioni, A. Vicenzo, P. Skeldon, G. E. Thompson, Anodic growth of titanium oxide: Electrochemical behaviour and morphological evolution, Electrochimica Acta, 75, 288 (2012); https://doi.org/10.1016/j.electacta.2012.04.114.

O. Shmychkova, T. Luk’yanenko, R. Amadelli, A. Velichenko, Electrodeposition of Ni2+-doped PbO2 and physicochemical properties of the coating, Journal of Electroanalytical Chemistry, 774, 88 (2016); https://doi.org/10.1016/j.jelechem.2016.05.017.

Downloads

Published

2024-09-23

How to Cite

Velichenko, A., Knysh, V., Shmychkova, O., Luk’yanenko, T., Pukas, S., Demchenko, P., … Gladyshevskii, R. (2024). Comprehensive study on physicochemical properties of materials based on titanium suboxides. Physics and Chemistry of Solid State, 25(3), 617–625. https://doi.org/10.15330/pcss.25.3.617-625

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)