Phase Equilibria in the Tl2Te–SiTe2 and Tl2SiTe3–Сd(Hg)Te Systems

Authors

  • Andrii Selezen Department of Chemistry and Physics of National University of Water and Environmental Engineering, Rivne, Ukraine
  • Mykola Moroz Department of Chemistry and Physics of National University of Water and Environmental Engineering, Rivne, Ukraine
  • Yuri Kogut Department of Chemistry and Technology of Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • Oleksandr Smitiukh Department of Chemistry and Technology of Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • Vasyl Kordan Department of Inorganic Chemistry of Ivan Franko National University of Lviv, Lviv, Ukraine
  • Lyudmyla Piskach Department of Inorganic and Physical Chemistry of Lesya Ukrainka Volyn National University, Lutsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.656-663

Keywords:

thallium tellurides, phase equilibria, solid solution, X-ray difraction, differential thermal analysis, scanning electron microscopy

Abstract

Component interaction in the Tl2Te – SiTe2 and Tl2SiTe3 – Cd(Hg)Te systems was investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) methods. The formation of four new ternary tellurides Tl18SiTe11, Tl4SiTe4, Tl2SiTe3, and Tl2Si2Te5, was found in the Tl2Te – SiTe2 system. The Tl18SiTe11 and Tl2SiTe3 compounds are formed congruently at 778 and 618 K, and Tl4SiTe4 and Tl2Si2Te5 form incongruently at 546 and 584 K, respectively. Quaternary compounds Tl2CdSiTe4 and Tl2HgSiTe4 that form in the Tl2SiTe3 – Cd(Hg)Te systems crystallize in the tetragonal space group I–42m аnd melt incongruently at 826 and 738 K, respectively. Each compound has a homogeneity region up to 5 mol.% from the Tl2SiTe3 side at 520 K.

References

G. Eulenberger, Darstellung und Kristallstruktur des Dithallium (I) blei (II) tetra- thiogermanats (IV) Tl2PbGeS4, Z. Naturforsch. B. 35, 335 (1980); https://doi.org/10.1515/znb-1980-0315.

O.V. Parasyuk, L.D. Gulay, L.V. Piskach, O.P. Gagalovska, The Ag2S–HgS–GeS2 system at 670 K and the crystal structure of the Ag2HgGeS4 compound, J. Alloys Compd., 336, 213(2002); https://doi.org/10.1016/S0925-8388(01)01904-1.

I.D. Olekseyuk, L.V. Piskach, O.Ye. Zhbankov, O.V. Parasyuk, Yu.M. Kogut, Phase diagrams of the quasi-binary systems Cu2S–SiS2 and Cu2SiS3–PbS and the crystal structure of the new quaternary compound Cu2PbSiS4, J. Alloys Compd., 399, 149 (2005); https://doi.org/10.1016/j.jallcom.2005.03.086.

L.P. Marushko, L.V. Piskach, O.V. Parasyuk, I.D. Olekseyuk, S.V. Volkov, V.I. Pekhnyo, The reciprocal system Cu2GeS3+3CdSe⇔Cu2GeSe3+3CdS, J. Alloys Compd., 473, 94 (2009); https://doi.org/10.1016/j.jallcom.2008.05.073.

C.D. Brunetta, W.C. Minsterman, C.H. Lake, J.A. Aitken, Cation ordering and physicochemical characterization of the quaternary diamond-like semiconductor Ag2CdGeS4, J. Solid State Chem., 187, 177 (2012); https://doi.org/10.1016/j.jssc.2011.12.032.

M.Yu. Mozolyuk, L.V. Piskach, A.O. Fedorchuk, I.D. Olekseyuk, O.V. Parasyuk, Phase equilibria in the Tl2S–PbS–GeS2 system and crystal structure of Tl0.5Pb1.75GeS4, Chem. Met. Alloys, 5, 37 (2012); http://dx.doi.org/10.30970/cma5.0205.

I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Novel Stannite-type Complex Sulfide Photocatalysts AI2 -Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation, Chem. Mater., 22, 1402 (2010); https://doi.org/10.1021/cm9022024.

C. Wang, S. Chen, J.-H. Yang, L. Lang, H.-J. Xiang, X.-G. Gong, A. Walsh, S.-H. Wei, Design of I2–II–IV–VI4 Semiconductors through Element Substitution: The Thermodynamic Stability Limit and Chemical Trend, Chem. Mater., 26, 3411 (2014); https://doi.org/10.1021/cm500598x.

M.A. McGuire, T.J. Scheidemantel, J.V. Badding, F.J. DiSalvo, Tl2AXTe 4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, Electronic Structure, and Thermoelectric Properties, Chem. Mater., 17, 6186 (2005); https://doi.org/10.1021/cm0518067.

C. Rincón, M. Quintero, E. Moreno, Ch. Power, E. Quintero, J.A. Henao, M.A. Macías, Raman spectrum of Cu2CdSnSe4 stannite structure semiconductor compound, Superlattices Microstruct., 88, 99 (2015); https://doi.org/10.1016/j.spmi.2015.08.032.

M.Ya. Valakh, V.O. Yukhymchuk, I.S. Babichuk, Ye.O. Havryliuk, O.V. Parasyuk, L.V. Piskach, A.P. Litvinchuk, Vibrational spectroscopy of orthorhombic Cu2ZnSiS4 single crystal: Low-temperature polarized Raman scattering and first principle calculations, Vib. Spectrosc., 89, 81 (2017); https://doi.org/10.1016/j.vibspec.2017.01.005.

H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, J. Ding, The fabrication of Cd-free Cu2ZnSnS4-Ag2ZnSnS4 heterojunction photovoltaic devices, Sol. Energy Mater. Sol. Cells, 178, 146 (2018); https://doi.org/10.1016/j.solmat.2018.01.022.

E. Hajdeu-Chicarosh, Variable-Range Hopping Conduction in the Kesterite and Wurtzstannite Cu2ZnGeS4 Single Crystals, Surf. Eng. Appl. Electrochem., 54, 279 (2018); https://doi.org/10.3103/S1068375518030055.

M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, D. Lindberg, O. Reshetnyak, L. Hupa, Thermal Stability and Thermodynamics of the Ag2ZnGeS4 Compound, Mater. Process. Fundam., 215 (2019); https://doi.org/10.1007/978-3-030-05728-2_20.

Y. Jiang, B. Yao, J. Jia, Z. Ding, R. Deng, D. Liu, Y. Sui, H. Wang, Y. Li, Structural, electrical, and optical properties of Ag2ZnSnSe4 for photodetection application, J. Appl. Phys., 125, 025703 (2019); https://doi.org/10.1063/1.5055895.

H.M. Mohammedi, F. Chiker, H. Khachai, N. Benosman, R. Khenata, R. Ahmed, S.B. Omran, A. Bouhemadou, X. Wang, Structural, optoelectronic, optical coating and thermoelectric properties of the chalcogenides type Kesterite Ag2CdSnX4 (with X=S, Se): A computational insight, Mater. Sci. Semicond. Process., 134, 106031 (2021); https://doi.org/10.1016/j.mssp.2021.106031.

S. Hasan, S. San, K. Baral, N. Li, P. Rulis, W.-Y. Ching, First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals, Materials. 15, 2843 (2022); https://doi.org/10.3390/ma15082843.

J.-H. Zhang, D.J. Clark, A. Weiland, S.S. Stoyko, Y.S. Kim, J.I. Jang, J.A. Aitken, Li2CdGeSe4 and Li2CdSnSe4 : biaxial nonlinear optical materials with strong infrared second-order responses and laser-induced damage thresholds influenced by photoluminescence, Inorg. Chem. Front., 4, 1472 (2017); https://doi.org/10.1039/C7QI00004A.

J.A. Brant, D.J. Clark, Y.S. Kim, J.I. Jang, J.-H. Zhang, J.A. Aitken, Li2CdGeS4, A Diamond-Like Semiconductor with Strong Second-Order Optical Nonlinearity in the Infrared and Exceptional Laser Damage Threshold, Chem. Mater., 26, 3045 (2014); https://doi.org/10.1021/cm501029s.

S. Azam, S.A. Khan, S. Goumri-Said, Modified Becke–Johnson (mBJ) exchange potential investigations of the optoelectronic structure of the quaternary diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4, Mater. Sci. Semicond. Process. 39, 606 (2015); https://doi.org/10.1016/j.mssp.2015.05.068.

O.V. Zamuruieva, M.V. Khvyshchu, O.V. Parasyuk, G.L. Myronchuk, Electric and photoelectric properties of solid solutions Ag2In2Si(Ge)Se6, Phys. Chem. Solid State. 17, 202 (2016); https://doi.org/10.15330/pcss.17.2.202-206.

O.V. Tsisar, L.V. Piskach, O.V. Parasyuk, O.V. Zamurujeva, G.L. Myronchuk, M. Piasecki, Tl2S–In2S3–GeS2 Glass System as Novel Promising Materials for Photonics, Phys. Chem. Solid State. 20, 416 (2019); https://doi.org/10.15330/pcss.20.4.416-422.

G.L. Myronchuk, O.V. Zamurujeva, I.V. Kityk, IR Photoinduced Piezoelectric Effects in Multi-Component Chalcogenides Ag2In(Ga)2Si(Ge)S(Se)6, Phys. Chem. Solid State, 20, 401 (2019); https://doi.org/10.15330/pcss.20.4.401-405.

A.O. Selezen, I.D. Olekseyuk, G.L. Myronchuk, O.V. Smitiukh, L.V. Piskach, Synthesis and structure of the new semiconductor compounds Tl2BIIDIVX4 (BII–Cd, Hg; DIV– Si, Ge; X–Se, Te) and isothermal sections of the Tl2Se–CdSe-Ge(Sn)Se2 systems at 570 K, J. Solid State Chem., 289, 121422 (2020); https://doi.org/10.1016/j.jssc.2020.121422.

R. Černý, J.-M. Joubert, Y. Filinchuk, Y. Feutelais, Tl2Te and its relationship with Tl5Te3, Acta Crystallogr. C, 58, i63 (2002); https://doi.org/10.1107/S0108270102005085.

F. Römermann, Y. Feutelais, S.G. Fries, R. Blachnik, Phase diagram experimental investigation and thermodynamic assessment of the thallium–selenium system, Intermetallics, 8, 53 (2000); https://doi.org/10.1016/S0966-9795(99)00068-0.

R. Mishra, P.K. Mishra, S. Phapale, P.D. Babu, P.U. Sastry, G. Ravikumar, A.K. Yadav, Evidences of the existence of SiTe2 crystalline phase and a proposed new Si–Te phase diagram, J. Solid State Chem., 237, 234 (2016); https://doi.org/10.1016/j.jssc.2016.02.021.

Materials Data on Tl2Te by Materials Project (2020); https://doi.org/10.17188/1277004.

J.W. Rau, C.R. Kannewurf, Intrinsic absorption and photoconductivity in single crystal SiTe2, J. Phys. Chem. Solids, 27, 1097 (1966); https://doi.org/10.1016/0022-3697(66)90085-0.

A. Assoud, N. Soheilnia, H. Kleinke, Crystal structure, electronic structure and physical properties of the new low-valent thallium silicon telluride Tl6Si2Te6 in comparison to Tl6Ge2Te6, J. Solid State Chem., 179, 2707 (2006); https://doi.org/10.1016/j.jssc.2006.05.029.

P. Seller, S. Bell, R.J. Cernik, C. Christodoulou, C.K. Egan, J.A. Gaskin, S. Jacques, S. Pani, B.D. Ramsey, C. Reid, P.J. Sellin, J.W. Scuffham, R.D. Speller, M.D. Wilson, M.C. Veale, Pixellated Cd(Zn)Te high-energy X-ray instrument, J. Instrum., 6, C12009 (2011); https://doi.org/10.1088/1748-0221/6/12/C12009.

T.R. Shojaei, M.A.M. Salleh, K. Sijam, R.A. Rahim, A. Mohsenifar, R. Safarnejad, M. Tabatabaei, Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots, Microchim. Acta, 183, 2277 (2016); https://doi.org/10.1007/s00604-016-1867-7.

W.H. Zachariasen, Die Kristallstruktur der Telluride von Zink, Cadmium und Quecksilber, Norsk Geologisk Tidsskrift, 8, 302 (1926).

I.Y. Borg, D.K. Smith, X-ray diffraction studies on CdTe at high pressure, J. Phys. Chem. Solids, 28, 49 (1967); https://doi.org/10.1016/0022-3697(67)90196-5.

I.M. Baker, Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series, 10, 323 (1994).

M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, Y. Kogut, O. Pereviznyk, S. Prokhorenko, O. Reshetnyak, Solid-state electrochemical synthesis and thermodynamic properties of selected compounds in the Ag–Fe–Pb–Se system, Solid State Sci., 107, 106344 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106344.

G.S. Hasanova, A.I. Aghazade, D.M. Babanly, S.Z. Imamaliyeva, Y.A. Yusibov, M.B. Babanly, Experimental study of the phase relations and thermodynamic properties of Bi-Se system, J. Therm. Anal. Calorim., 147, 6403 (2022); https://doi.org/10.1007/s10973-021-10975-0.

M.B. Babanly, Y. A.Yusibov, S.Z. Imamaliyeva, D. M.Babanly, I. J.Alverdiyev, Phase Diagrams in the Development of the Argyrodite Family Compounds and Solid Solutions Based on Them, J. Phase Equilib. Diffus., (2024); https://doi.org/10.1007/s11669-024-01088-w.

L. Akselrud, Y. Grin, WinCSD8: software package for crystallographic calculations (Version 4), J. Appl. Crystallogr., 47, 803 (2014); https://doi.org/10.1107/S1600576714001058.

Downloads

Published

2024-09-26

How to Cite

Selezen, A., Moroz , M., Kogut , Y., Smitiukh , O., Kordan , V., & Piskach , L. (2024). Phase Equilibria in the Tl2Te–SiTe2 and Tl2SiTe3–Сd(Hg)Te Systems. Physics and Chemistry of Solid State, 25(3), 656–663. https://doi.org/10.15330/pcss.25.3.656-663

Issue

Section

Scientific articles (Chemistry)