Obtaining and X-ray Analysis of Cobalt Ferrite Powders Substituted by Nickel Cations
DOI:
https://doi.org/10.15330/pcss.16.2.351-354Keywords:
sol-gel technology, nickel-cobalt ferrite, nanosized powder, lattice parameter, cationic distributionAbstract
The aim of this work was to create and study of ferrite nickel-cobalt powders, using sol-gel technology with participation of auto-combustion. After completing the process autocombustion was obtained only one phase, which corresponded to the cubic structure of spinel space group Fd3m. It was found that the average size of coherent scattering regions not exceeding 62 nm. The dependences of the lattice parameter, X-ray density and specific surface area of the ferrite powders from nickel content were found. It was shown that at substitution of cations cobalt on cations nickel latest give preference only B positions, thus displacing part of in the A positions.
References
[1] G. Bate, D. J. Craik. Magnetic Oxides: Part 2 (Wiley Interscience, New York, 1975).
[2] S. S. Shinde, K. M. Jadhav, Mater. Lett. 37, 63 (1998).
[3] C. Yang, J. Wu, Y. Hou, Chem. Commun. 47, 5130 (2011).
[4] Q. Song, Z. J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004).
[5] K. Vasundhara, S. N. Achary, S. K. Deshpande, P. D. Babu, S. S. Meena et al., J. Appl. Phys. 113, 194101 (2013).
[6] A. P. Herrera, L. Corrales, E. Chavez, J. Bolivar, O. N. C. Uwakweh, C. Rinaldi, J. Magn. Magn. Mater. 328, 41 (2013).
[7] A. S. Ponce, E. F. Chagas, R. J. Prado, C. H. M. Fernandes, A. J. Terezo, E. Baggio-Saitovitch, J. Magn. Magn. Mater. 344, 182 (2013).
[8] Xiaobo Wu, Wei Cai, Yi Kan, Pan Yang, Yunfei Liu, Huifeng Bo, Xiaomei Lu, Jinsong Zhu, Ferroelectrics 380, 48 (2009).
[9] G. V. Duong, R. S. Turtelli, R. Groessinger, J. Magn. Magn. Mater. 322, 1581 (2010).
[10] S. C. Chae, P. Murugavel, J. H. Lee, H. J. Ryu, T. W. Noh, Journal of the Korean Physical Society 47, 345 (2005).
[11] M. H. Alimuddin, S. Kumar, S. E. Shirsath et al. Ceram. Int. 39, 1807 (2013).
[12] J. W. M. Bulte, M. de Cuyper, D. Despres, J. A. Frank, J. Magn. Magn. Mater. 194, 204 (1999).
[13] Q. Song, Z. J. Zhang, J. Phys. Chem. B 110, 11205 (2006).
[14] A. Kopaev, V. Bushkova, B. Ostafiychuk. Sol-Gel Synthese und Eigenschaften der weichmagnetischen Nanoferrite und Verbundwerkstoffen. Physik und Technologie der Nanoferrite mit dem Bariumtitanat (Lap Lambert Academic Publishing, Saarbrücken, 2013).
[15] L. Vegard, H. Dale, Kristallogr. B67, 148 (1928).
[16] C. G. Whinfrey, D. W. Eckort, A. T. Tauber, J. American. Chem. Soc. 82 (11), 2695 (1960).
[17] S. Singhal, J. Singha, S. K. Barthwalb, K. Chandraa, Journal of Solid State Chemistry 178, 3183 (2005).
[18] H. Ohnishi, T. Teranishi, J. Phys. Soc. Japan 6, 36 (1969).
[19] J. B. Goodenough, A. L. Loeb, Phys. Rev. 98, 391 (1953).
[20] S. Brunauer, P. H. Emmett, E. Teller, Journal of the American Chemical Society 60, 309 (1938).
[2] S. S. Shinde, K. M. Jadhav, Mater. Lett. 37, 63 (1998).
[3] C. Yang, J. Wu, Y. Hou, Chem. Commun. 47, 5130 (2011).
[4] Q. Song, Z. J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004).
[5] K. Vasundhara, S. N. Achary, S. K. Deshpande, P. D. Babu, S. S. Meena et al., J. Appl. Phys. 113, 194101 (2013).
[6] A. P. Herrera, L. Corrales, E. Chavez, J. Bolivar, O. N. C. Uwakweh, C. Rinaldi, J. Magn. Magn. Mater. 328, 41 (2013).
[7] A. S. Ponce, E. F. Chagas, R. J. Prado, C. H. M. Fernandes, A. J. Terezo, E. Baggio-Saitovitch, J. Magn. Magn. Mater. 344, 182 (2013).
[8] Xiaobo Wu, Wei Cai, Yi Kan, Pan Yang, Yunfei Liu, Huifeng Bo, Xiaomei Lu, Jinsong Zhu, Ferroelectrics 380, 48 (2009).
[9] G. V. Duong, R. S. Turtelli, R. Groessinger, J. Magn. Magn. Mater. 322, 1581 (2010).
[10] S. C. Chae, P. Murugavel, J. H. Lee, H. J. Ryu, T. W. Noh, Journal of the Korean Physical Society 47, 345 (2005).
[11] M. H. Alimuddin, S. Kumar, S. E. Shirsath et al. Ceram. Int. 39, 1807 (2013).
[12] J. W. M. Bulte, M. de Cuyper, D. Despres, J. A. Frank, J. Magn. Magn. Mater. 194, 204 (1999).
[13] Q. Song, Z. J. Zhang, J. Phys. Chem. B 110, 11205 (2006).
[14] A. Kopaev, V. Bushkova, B. Ostafiychuk. Sol-Gel Synthese und Eigenschaften der weichmagnetischen Nanoferrite und Verbundwerkstoffen. Physik und Technologie der Nanoferrite mit dem Bariumtitanat (Lap Lambert Academic Publishing, Saarbrücken, 2013).
[15] L. Vegard, H. Dale, Kristallogr. B67, 148 (1928).
[16] C. G. Whinfrey, D. W. Eckort, A. T. Tauber, J. American. Chem. Soc. 82 (11), 2695 (1960).
[17] S. Singhal, J. Singha, S. K. Barthwalb, K. Chandraa, Journal of Solid State Chemistry 178, 3183 (2005).
[18] H. Ohnishi, T. Teranishi, J. Phys. Soc. Japan 6, 36 (1969).
[19] J. B. Goodenough, A. L. Loeb, Phys. Rev. 98, 391 (1953).
[20] S. Brunauer, P. H. Emmett, E. Teller, Journal of the American Chemical Society 60, 309 (1938).
Downloads
Published
2015-06-15
How to Cite
Bushkova, V., Yaremiy, I., Ilnitsky, R., Lisovskiy, R., & Mokhnatskyi, M. (2015). Obtaining and X-ray Analysis of Cobalt Ferrite Powders Substituted by Nickel Cations. Physics and Chemistry of Solid State, 16(2), 351–354. https://doi.org/10.15330/pcss.16.2.351-354
Issue
Section
Scientific articles