Modeling of stress-strain state of piping systems with erosion and corrosion wear

Authors

  • Ya. V. Doroshenko Ivano-Frankivsk National Technical University of Oil and Gas
  • A. P. Oliinyk Ivano-Frankivsk National Technical University of Oil and Gas
  • O. M. Karpash Ivano-Frankivsk National Technical University of Oil and Gas

DOI:

https://doi.org/10.15330/pcss.21.1.151-156

Keywords:

ring stresses, erosion, corrosion, bend, internal pressure, cylindrical coordinate system

Abstract

The problems of modeling the stress-deformed state of erosion or corrosion-worn rectilinear sections and the ball-shaped bends of pipeline systems are proposed to solve in a cylindrical coordinate system. For this purpose, formulas of Christophell type II, non-zero components of the strain tensor and a system of equilibrium equations in the framework of linear torsional theory are given. The system of equilibrium equations is reduced to one equation, which is the basic equation of the Lame’s problem. Formulas for the calculation of ring stresses that occur in the wall of erosion or corrosion worn rectilinear sections, and the removal of pipelines from the action of internal pressure are derived. The influence of the change in the wall thickness of the pipeline bends in the place of their erosion or corrosion wear on the amount of ring stresses is determined.

References

A.P. Oliinyk, Matematychni modeli protsesu kvazistatsionarnoho deformuvannia truboprovidnykh ta promyslovykh system pry zmini yikh prostorovoi konfihuratsii (IFNTUNH, Ivano-Frankivsk, 2010).

A.P. Oliinyk, L.M. Zamikhovskyi, Matematychnyi aparat dlia kontroliu napruzheno-deformovanoho stanu truboprovodiv (IFNTUNH, Ivano-Frankivsk, 2008).

M.P. Kovalko, Truboprovidnyi transport hazu (Ahenstvo z ratsionalno vykorystanni enerhii ta ekolohii, Kyiv, 2002).

Yu.Ie. Yakubovskyi, H.A. Maliushin, C.B. Yakubovska, O.M. Platonov, Problemy mitsnosti truboprovidnoho transportu (Nedra, Sankt-Peterburh, 2003).

B.O. Yakhno, S.I. Trubachov, Journal of Mechanical Engineering NTUU «Kyiv Polytechnic Institute» 67, 126 (2003) (https://doi.org/10.20535/2305-9001.2013.67.37763).

H.S. Ratushniak, Topohrafiia z osnovamy kartohrafii (TsNL, Kyiv, 2003).

Y.V. Oryliak, S.A. Radchenko, Problemy prochnosty 3, 100 (2008).

F. Guarracino, Problemy prochnosti 5, 28 (2003).

A.P. Oliinyk, T.O. Bolhachenko, Naukovyi visnyk IFNTUNH 1(19), 153 (2009).

A.P. Oliinyk, O.Ia. Ivasiv, Metody ta prylady kontroliu yakosti 16, 8 (2006).

Ya.V. Doroshenko, Journal of Hydrocarbon Power Engineering 6(1), 14 (2019) (https://doi.org/10.31471/2311-1399-2019-1(11)-14-21).

Ya.V. Doroshenko, Yu.I. Doroshenko, Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch 2(35), 112 (2010).

T. Vilkys, V. Rudzinskas, O. Prentkovskis, J. Tretjakovas, N. Višniakov, P. Maruschak, Metals 8(5), 346 (2018) (https://doi.org/10.3390/met8050346).

Instruktsiia z topohrafichnoho zniattia u masshtabakh 1:5000, 1:2000;1:1000 ta 1:500: HKNTA-2.04-02-98 (Ukrheoinform, Kyiv, 1998).

A.P. Oliinyk, L.M. Zamikhovskyi, V.P. Ivanyshyn, Mizhnar. nauk.-tekhn. konf. Ivano-Frankivsk: IFNTUNH (Fakel, Ivano-Frankivsk, 2000), s. 292.

A.P. Oliinyk, T.O. Bolhachenko, L.M. Ivanchuk, Naukovi visti Halytskoi akademii 1(15), 11 (2009).

B.E. Pobedria, Lektsyy po tenzornomu analyzu (Yz-vo Moskovskoho un-ta, Moskva, 1986).

B.E. Pobedria, D.V. Heorhyevskyi, Lektsyy po teoryy upruhosty (Edytoryal URSS, Moskva, 1999).

L.Y. Sedov, Mekhanyka spoloshnykh sred (Nauka, Moskva, 1984).

Published

2020-03-29

How to Cite

Doroshenko, Y. V., Oliinyk, A. P., & Karpash, O. M. (2020). Modeling of stress-strain state of piping systems with erosion and corrosion wear. Physics and Chemistry of Solid State, 21(1), 151–156. https://doi.org/10.15330/pcss.21.1.151-156

Issue

Section

Scientific articles