Bimetallic nanocatalysts PtCu and PtNi for fuel cells

Authors

  • O. M. Chernikova Kryviy Rih National University
  • Y. V. Ogorodnik Radiation Monitoring Devices, inc.

DOI:

https://doi.org/10.15330/pcss.21.2.211-214

Keywords:

heterogeneous catalitic, bimetalic film catalysts, methanol oxidation, functional theory, crystal lattice, density, energy spectrum, fuell cells

Abstract

We review the physical mechanisms of heterogeneous catalytic oxidizing reactions methanol oxidation using bimetallic film layered mechanically strained PtNi and PtCu-based catalysts. The main research methods are theoretical calculations based on the density functional theory and the ˝ab initio˝ pseudopotential method. The work illustrates that the mechanical stress and the presence of dissociated oxygen have the greatest impact on increasing electron bimetallic catalyst activity during the oxidation of methanol with using bimetallic layered mechanically strained PtNi and PtCu-based catalysts. The compression of the platinum film pushes the electron density outside the film and it gives the density an elongated form and increases the chemical and absorption activity of the film.

References

Zhang B.-W., Yang H.-L., Wang Y.-X., Dou S.-X., Liu H.-K, Advanced Energy Materials 8(20), 1703597, (2018) (doi: 10.1002/aenm.201703597).

Sui S., Wang X., Zhou X., Su Y., Riffat S. & Liu C., Journal of Materials Chemistry A 5(5), 1808–1825, (2017) (doi: 10.1039/c6at08580f).

Zhang B. W., He C. L., Jiang Y. X., Chen M. H., Li Y. Y., Rao L., Sun S. G., Electrochem. Commun. 25(105), (2012) (doi: 10.1039/j.elecom.2012.09.007).

Wang C., Li D., Chi M., Pearson J., Rankin R. B., Greeley J., Duan Z., Wang G., van der Vliet D., More K.L., Markovic N. M., Stamenkovic V. R., J. Phys. Chem. Lett. 3, 1668, (2012) (doi: 10.1021/jz300563z).

Devid Sebastian, Vansinzo Baglio, J. Catalists 7 (310), (2017) (doi: 10.3390/catal7120370).

Yang P., Yuan X., Hu H., Liu Y., Zheng H., Yang D., Zhang, Q., Advanced Functional Materials 28(1), 1704774, (2017) (doi: 10.1002/adfm.201704774).

Zhang Z., Sun J., Wang F., Dai L., Angewandte Chemie International Edition 57(29), 9038–9043, (2018) (doi: 10.1002/anie.201804958).

Gasteiger H.A., Kocha S.S., Sompalli B., Wagner F.T., Appl. Catal. B Environ 56, 9–35, (2005) (doi: 10.1002/j.apcatb.2004.06.021).

Sebastián D., Serov A., Matanovic I., Artyushkova K., Atanassov P., Aricò A.S.S., Baglio V., Nano Energy 34, 195–204, (2017) (doi: 10.1016/j.nanoen.2017.02.039).

Yoshiyuki Show, Yutavo Ueno., J. Nanomaterials 7 (2), 31-40, (2017) (doi: 10.3390/ nano7020031).

Kuln S., Strasser P., Springer Catalysis J. 59, 1628-1637, (2016) (doi: 10.1007/s11244-016-0682-z).

Wang Q., Chen S., Shi F., Chen K., Nie Y., Wang Y., Wei Z., Advanced Materials J. 28(48), 10673–10678, (2016) (doi: 10.1002/adma.201603509).

Bu L., Guo S., Zhang X., Shen X., Su D., Lu G., Huang X., Nature Communications 7, 11850, (2016) (doi: 10.1038/ncomms11850).

Wang G.-H., Hilgert J., Richter F. H., Wang F., Bongard H.-J., Spliethoff B., Schüth F., Nature Materials 13(3), 293–300, (2014) (doi: 10.1038/nmat3872).

Guedes-Sobrinho D., Nomiyama R. K., Chaves A. S., Piotrowski M. J., Da Silva J. L. F., J. Phys. Chem. C 119, 15669–15679, (2015) (doi: 10.1021/acs.jpcc.8b12219).

Huang X., Zhao Z., Cao L., Chen Y., Zhu E., Lin Z., Li M., Yan A., Zettl A., Wang Y. M., J. Science 348, 1230–1234, (2015) (doi: 10.1126/science.aaa8765).

Zhao X., Chen S., Fang Z., Ding J., Sang W., Wang Y., Zeng, J., Journal of the American Chemical Society 137(8), 2804–2807, (2015) (doi: 10.1021/ja511596c).

Mani P., Srivastava R., Strasser P., J. Power Sources 196, 666–673, (2011) (doi: 10.1016/j.jpowsour.2010.07.047).

Liao Y., Yu G., Zhang Y., Guo T., Chang F., Zhong C.-J., The Journal of Physical Chemistry C 120(19), 10476–10484, (2016) (doi: 10.1021/acs.jpcc.6b02630).

Torborg C., Adv. Synth. Catal. 351, 3027 – 3043, (2009) (doi: 10.1002/adsc.200900587).

Bachelet G.В., Hamann D.R., Schluter M., Physical Review B 26, 4199 – 4228, (1982).

Balabay R.M, Grishchenko N.V., J Photoelectronics 8, 25 – 29, (1998).

Loukrakpam R., Luo J., He T., Chen Y., Xu Z., Njoki P. N., Zhong C.-J., The Journal of Physical Chemistry C 115(5), 1682–1694, (2011) (doi: 10.1021/jp109630n).

Escaño, M. C., Gyenge, E., Nakanishi, H., & Kasai, H., Journal of Nanoscience and Nanotechnology 11(4), 2944–2951, (2011) (doi: 10.1166/jnn.2011.389).

Downloads

Published

2020-06-30

How to Cite

Chernikova , O. M., & Ogorodnik, Y. V. (2020). Bimetallic nanocatalysts PtCu and PtNi for fuel cells. Physics and Chemistry of Solid State, 21(2), 211–214. https://doi.org/10.15330/pcss.21.2.211-214

Issue

Section

Scientific articles