Si-Ge whiskers for thermoelectric sensors design

Authors

  • A.A. Druzhinin Lviv Polytechnic National University
  • I.P. Ostrovskii Lviv National Polytechnic University
  • Yu.M. Khoverko Lviv National Polytechnic University
  • N.S. Liakh-Kaguy Lviv Polytechnic National University

DOI:

https://doi.org/10.15330/pcss.21.3.399-403

Keywords:

Si-Ge, whiskers, Seebeck coefficient, thermal conductivity, figure of merit, sensor

Abstract

The paper deals with studies of thermoelectric properties for Si1-xGex (x=0.01-0.05) whiskers doped with boron during their growth by CVD method. Temperature dependences of the resistance and the Seebeck coefficient for Si1-xGex whiskers were measured in the temperature range 275–550 K. A method for determination of thermoelectric parameters of the whisker was proposed with use of the whisker joints, which allows us to define a ratio of Seebeck coefficient to thermal conductivity a/k. Taking into account the obtained values of Seebeck coefficient, the whisker conductance and estimated values of thermal conductivity, parameter ZT was calculated for the whiskers and consists of 0.15 for T=200oC. The obtained value of ZT is in good coincidence with literature data for hop pressed Si-Ge nanocomposites. The humidity sensor was designed base on Si-Ge whiskers.

References

L.W. Ji, S.J. Young, Ch.H. Hsiao and A.D. Lam. Journal of Nanomaterials, 906287, 1 (2014) (http://dx.doi.org/10.1155/2014/906287).

P. Ambhorkar, Z. Wang, H. Ko, S. Lee, K. Koo, K. Kim and D. Cho. Micromachines 9(12), 679 (2018) (https://doi.org/10.3390/mi9120679).

P. Namdari, H. Daraee and A. Eatemadi. Nanoscale Research Letters 11, 406 (2016) (https://doi.org/10.1186/s11671-016-1618-z).

Y. Xu, X. Hu, S. Kundu, A. Nag, N. Afsarimanesh, S. Sapra, S. Mukhopadhyay, T. Han. Sensors 19(13), 2908 (2019) (https://doi.org/10.3390/s19132908).

S. Jang, H. Lee, J.Y. Shin, H.J. Yoo, and D. Dan. Sensors and Materials 30, 8(2), 1891 (2018) (https://doi.org/10.18494/SAM.2018.1903).

E.J.R. Cao, Sudhölter, L.C.P.M de Smet. Sensors 14(1), 245 (2013) (https://doi.org/10.3390/s140100245).

A.A. Druzhinin, I.P. Ostrovskii, Yu.M. Khoverko, N.S. Liakh-Kaguj and Iu.R. Kogut, Materials Science in Semiconductor Processing 14(1), 18 (2011) (https://doi.org/10.1016/j.mssp.2010.12.012).

A.A. Druzhinin I.P. Ostrovskii N.S. Liakh. Mater. Sci. Semicond. Process 8, 193 (2005) (https://doi.org/10.20535/2411-2976.22016.20-27).

A.A. Druzhinin I.P. Ostrovskii N.S. Liakh S.M. Matvienko, Journal of Physical Studies 9(1), 71 (2005) (https://doi.org/10.30970/jps.09.71).

A.I. Klimovskaya I.P. Ostrovskii, A.S. Ostrovskaya. Phys. Stat. Solid A 153, 465 (1996) (https://doi.org/10.1002/pssa.2211530221).

S. Wu, T. Yan, Z. Kuai, W. Pan, Energy Storage Materials 25, 251 (2020) (https://doi.org/10.1016/j.ensm.2019.10.010).

Z. Ren, Y. Lan, Q. Zhang, Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems (CRC Press, Boca Raton, 2017) (https://doi.org/10.1201/9781315153766).

Downloads

Published

2020-09-29

How to Cite

Druzhinin, A., Ostrovskii, I., Khoverko, Y., & Liakh-Kaguy, N. (2020). Si-Ge whiskers for thermoelectric sensors design. Physics and Chemistry of Solid State, 21(3), 399–403. https://doi.org/10.15330/pcss.21.3.399-403

Issue

Section

Scientific articles