Electrical properties of composites based on nanoporous carbon material

Authors

  • I. M. Budzulyak Vasyl Stefanyk Precarpathian National University
  • P. I. Kolkovskyi Vasyl Stefanyk Precarpathian National University
  • B. I. Rachiy Vasyl Stefanyk Precarpathian National University
  • M. I. Kolkovskyi Vasyl Stefanyk Precarpathian National University
  • S. L. Revo Taras Shevchenko National University of Kyiv
  • R. Y. Musiy Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine
  • A. M. Gamarnyk Ivano-Frankivsk National Medical University
  • A. B. Hrubiak G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.21.3.409-414

Keywords:

Mott-Schottky model, nanoporous carbon material, flat-band potential

Abstract

In this work, the morphological and electrical properties of the composite nanoporous carbon material/thermally expanded graphite or acetylene black have been investigated. Nanoporous carbon material was obtained from plant materials by its thermochemical activation based on potassium hydroxide. The dependence of the specific capacity of the nanoporous carbon/electrolyte electrochemical system on the applied potential was determined by the impedance spectroscopy method. Furthermore, the concentration of charge transfer and the density of states, as well as the flat-band potential of the system under research, were determined based on the Mott-Schottky model.

References

Lan Xia, L. Yu, D. Hua, G.Z. Chen, Mater. Chem. Front. 1(4), 584 (2017) (http://doi.org/10.1039/C6QM00169F).

B.K. Ostafiychuk, I.M. Budzulyak, B.I. Rachiy, R.P. Lisovsky, V.I. Mandzyuk, P.I. Kolkovsky, R.I. Merena, M.V. Berkeshchuk, L.V. Golovko, J. Nano- Electron. Phys. 9(5), 05001 (2017) (http://doi.org/10.21272/jnep.9(5).05001).

B.I. Rachiy, I.M. Budzulyak, V.M. Vashchynsky, N.Y. Ivanichok, M.O. Nykoliuk, Nanoscale Res. Lett. 11(1), 1 (2016) (http://doi.org/10.1186/s11671-016-1241-z).

P. Kurzweil AC, Impedance Spectroscopy – a powerful tool for the characterization of materials and electrochemical power sources, Proc. 12-th Int. Seminar on Double Layer Capacitors and Similar Energy Storage Devices (Deerfield Beach, Florida, USA, 2004). P. 18 (https://www.oth-aw.de/files/oth-aw/Professoren/Kurzweil/PK_Florida2004.pdf).

A.I. Kachmar, V.M. Boichuk, I.M. Budzulyak, V.O. Kotsyubynsky, B.I. Rachiy, R.P. Lisovskiy, Fuller Nanotub Car N. 27(9), 669 (2019) (http://doi.org/10.1080/1536383X.2019.1618840).

G. Natu, P. Hasin, Z. Huang, Z. Ji, M. He, Y. Wu, ACS Appl Mater Interfaces. 4(11), 5922 (2012) (http://doi.org/10.1021/am301565j).

F. La Mantia, H. Habazaki, M. Santama¬ria, F. Di Quarto, Russ. J. Electrochem. 46, 1306 (2010) (http://doi.org/10.1134/S102319351011011X).

B.K. Ostafiychuk, I.M. Budzulyak, B.I. Rachiy, V.M. Vashchynsky, V.I. Mandzyuk, R.P. Lisovsky, L.O. Shyyko, Nanoscale Res Lett. 10(1), 1 (2015) (http://doi.org/10.1186/s11671-015-0762-1).

A.P. Karnaukhov, Adsorption. The texture of dispersed and porous materials (Novosibirsk, Science, Sib. enterprise RAN Publ., 1999) (https://www.twirpx.com/file/1369122/).

M. Hahn, M. Baertschi, O. Barbieri, J.C. Sauter, R. Kötz, and R. Gallay, Electrochem. and solid –st. Letters 7(2), 33 (2004) (https://iopscience.iop.org/article/10.1149/1.1635671/meta).

K.A. Kazdobin, E.D. Pershina, Impedance Spectroscopy of the Electrolytic Materials, Ukraine, 224 (2012) (https://www.researchgate.net/publication/274634354_Impedance_manualUA),

A.N. Frumkin, Potentsialy nulevogo zaryada (The Potentials of Zero Charge) (Nauka, Moscow, 1979) (https://www.twirpx.com/file/1621717/).

B.B. Damaskin, O.A. Petrii, G.A. Tsirlina, Electrochemistry, the 2nd Edition (Koloss-Khimiya, Moscow, 2006) (http://www.chem.msu.ru/rus/books/2015/damaskin/welcome.html).

B.P. Bahmatyuk, A.S. Kurepa, I.I. Grygorchak, Visnyk of Lviv Polytechnic National University, Series of Physical and mathematical sciences 687, 188 (2010) (http://vlp.com.ua/node/5960).

Y. Zhou, T. Holme, J. Berry, T.R. Ohno, D. Ginley, R. O’Hayre, J. Phys. Chem. C. 114, 506 (2010) (http://doi.org/10.1021/jp9088386).

H. Mc Gerischer, R. Intyre, D. Scherson, W. Storck, J. Phys. Chem. 91, 1930 (1987) (http://doi.org/10.1021/j100291a049).

R. Memming, Semiconductor Electro¬chemistry (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2001) (https://www.wiley.com/en-us/Semiconductor+Electrochemistry%2C+2nd+Edition-p-9783527312818).

M. Itagaki, S. Suzuki, I. Shitanda, K. Watanabe, H. Nakazawa, J. Power Sources. 161, 415 (2007) (http://doi.org/10.1016/j.jpowsour.2006.09.077).

B.E. Conway, Electrochemical superca¬pacitors – scientific fundamentals and techno¬logical applications (The Kluwer Academic Plenum, NY, 1999) (https://www.springer.com/gp/book/9780306457364).

Downloads

Published

2020-09-29

How to Cite

Budzulyak, I. M., Kolkovskyi, P. I., Rachiy, B. I., Kolkovskyi, M. I., Revo, S. L., Musiy, R. Y., … Hrubiak, A. B. (2020). Electrical properties of composites based on nanoporous carbon material. Physics and Chemistry of Solid State, 21(3), 409–414. https://doi.org/10.15330/pcss.21.3.409-414

Issue

Section

Scientific articles

Most read articles by the same author(s)