Synthesis of titanium oxide thin films by spray pyrolysis method and its photocatalytic activity for degradation of dyes and ciprofloxacin
DOI:
https://doi.org/10.15330/pcss.21.3.426-432Keywords:
Ti02, methyl blue, malachite green, ciprofloxacinAbstract
Titanium oxide (TiO2) thin film was obtained using the spray pyrolysis method. The structural properties of the thin film obtained were examined by X-ray diffraction (XRD) and it was found that it also had a tetragonal structure. The morphological feature was examined with scanning electron microscopy (SEM). In addition, the optical properties of the film were examined and the forbidden energy range was calculated. Photocatalytic properties of TiO2 thin film on dyestuff and antibiotic were investigated. Methyl blue and malachite green were used in the dye degradation test of the thin film. In particular, it was found to have a high degradation of 86% after 100 minutes on malachite green. Moreover, the degradation on ciprofloxacin after 90 minutes was found as 93%. The reusability ciprofloxacin antibiotic was investigated and it was found that synthesized TiO2 thin film has excellent stability
References
F. Meng, M. Song, B. Song, Y. Wei, Q. Cao, & Y. Cao, Chemosphere 243, 125322 (2020) (https://doi.org/10.1016/j.chemosphere.2019.125322).
J. Li, Z. Chen, J. Fang, Q. Yang, X. Yang, W. Zhao, D. Zhou, X. Qian, C. Liu, & J. Shao, Materials Express 9, 437 (2019) (https://doi.org/10.1166/mex.2019.1522).
M.C. and M.G. Hasan Eskalen, Celal Kursun, Mikail Aslan, H. Eskalen, C. Kursun, M. Aslan, M. Cesme, & M. Gogebakan, arXiv preprint arXiv:1709.06941, 92093, 1 (2017).
Barbara Ambrosetti, Luigi Campanella, & Raffaella Palmisano, Journal of Environmental Science and Engineering A, 4, 273 (2015) (https://doi.org/10.17265/2162-5298/2015.06.001).
H. Guo, N. Jiang, H. Wang, N. Lu, K. Shang, J. Li, & Y. Wu, Journal of Hazardous Materials 371, 666 (2019) (https://doi.org/10.1016/j.jhazmat.2019.03.051).
K. Yi, D. Wang, QiYang, X. Li, H. Chen, J. Sun, H. An, L. Wang, Y. Deng, J. Liu, & G. Zeng, Science of the Total Environment, 605-606, 368 (2017) (https://doi.org/10.1016/j.scitotenv.2017.06.215).
V.V. Kondalkar, S.S. Mali, R.M. Mane, P.B. Dandge, S. Choudhury, C.K. Hong, P.S. Patil, S.R. Patil, J.H. Kim, & P.N. Bhosale, Industrial and Engineering Chemistry Research 53, 18152 (2014) (https://doi.org/10.1021/ie501821a).
F. Wang, X. Yu, M. Ge, & S. Wu, Chemical Engineering Journal 384, 2 (2020) (https://doi.org/10.1016/j.cej.2019.123381).
C. Kursun, M. Gogebakan, H. Eskalen, S. Uruş, & J. H. Perepezko, Journal of Inorganic and Organometallic Polymers and Materials 30, 494 (2020) (https://doi.org/10.1007/s10904-019-01209-w).
H. Eskalen, S. Uruş, H. Yaykaşlı, & M. Gögebakan, Microstructural Characterization of Ball Milled Co 60 Fe 18 Ti 18 Nb 4 Alloys and Their Photocatalytic Performance. Alloy Mater. Their Allied Appl. (Wiley, 2020), pp. 91 (https://doi.org/10.1002/9781119654919.ch6).
S. Kerli, Ü. Alver, H. Eskalen, & A. K. Soğuksu, ComptesRendus de L’AcademieBulgare des Sciences 72, 327 (2019) (https://doi.org/10.7546/CRABS.2019.03.06).
S. Kerli, Ü. Alver, H. Eskalen, S. Uruş, & A. K. Soğuksu, Russian Journal of Applied Chemistry 92, 304 (2019) (https://doi.org/10.1134/S1070427219020216).
S. Kerli& A.K. Soğuksu, Zeitschriftfür Kristallographie-Crystalline Materials 234, 725 (2019) (https://doi.org/10.1515/zkri-2019-0043)
S. Kerli, A.K. Soğuksu, & M. Kavgacı, International Journal of Modern Physics B, 34, 2050081 (2020) (https://doi.org/10.1142/S0217979220500812).
R. Ayouchi, C. Casteleiro, R. Schwarz, J. R. Barrado, & F. Martín, Physica Status Solidi (C) Current Topics in Solid State Physics 7, 933 (2010) (https://doi.org/10.1002/pssc.200982895).
S. Kerli, Ö. Akgül, Ü. Alver, AIP Conf. Proc., AIP Publishing LLC, 280002 (2016) (https://doi.org/10.1063/1.4944281).
M.S.P. Sarah, M.Z. Musa, M.N. Asiah, & M. Rusop, 2010 International Conference on Electronic Devices, Systems and Applications, ICEDSA 2010 - Proceedings 361 (2010) (https://doi.org/10.1109/ICEDSA.2010.5503040).
S. Sebnem Cetin, S. Corekci, M. Cakmak, & S. Ozcelik, Crystal Research and Technology 46, 1207 (2011) (https://doi.org/10.1002/crat.201100195).
T. Touam, M. Atoui, I. Hadjoub, A. Chelouche, B. Boudine, A. Fischer, A. Boudrioua, & A. Doghmane, EPJ Applied Physics, 67, (2014) (https://doi.org/10.1051/epjap/2014140228).
A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, & S. Agilan, Optik 124, 6201 (2013) (https://doi.org/10.1016/j.ijleo.2013.04.085).
S.T. Sundari, N.C. Raut, T. Mathews, P.K. Ajikumar, S. Dash, A.K. Tyagi, & B. Raj, Applied Surface Science 257, 7399 (2011) (https://doi.org/10.1016/j.apsusc.2011.02.064).
G. Hosseinzadeh, H. Rasoulnezhad, N. Ghasemian, & R. Hosseinzadeh, Journal of the Australian Ceramic Society 55, 387 (2019) (https://doi.org/10.1007/s41779-018-0246-8)
I. Dundar, M. Krichevskaya, A. Katerski, & I. O. Acik, Royal Society open science 6, 181578 (2019) (https://doi.org/10.1098/rsos.181578)
K.B. Chaudhari, Y.N. Rane, D.A. Shende, N.M. Gosavi, & S.R. Gosavi, Optik 193, 163006 (2019) (https://doi.org/10.1016/j.ijleo.2019.163006).
D. Komaraiah, E. Radha, M.V.R. Reddy, J.S. Kumar, & R. Sayanna, i-Manager’s Journal on Material Science 7, 28 (2019) (https://doi.org/10.26634/jms.7.1.15719)
C. Zou, M. Liang, Z. Yang, X. Zhou, Y. Yang, & S. Yang, Nanotechnology 31, 345604 (2020) (https://doi.org/10.1088/1361-6528/ab912f).
M. Chen & W. Chu, Industrial & engineering chemistry research 51, 4887 (2012) (https://doi.org/10.1021/ie300146h)
M. Manasa, P.R. Chandewar, & H. Mahalingam, Catalysis Today (2020) (https://doi.org/10.1016/j.cattod.2020.03.018).
C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, & W. Wang, Scientific Reports 7, 1 (2017) (https://doi.org/10.1038/s41598-017-04398-x).