First principles DFT calculations of the optical properties of A4BX6 group crystals

Authors

  • H. Ilchuk Lviv Polytechnic National University
  • M. Solovyov Національний університет “Львівська політехніка”
  • I. Lopatynskyi Lviv Polytechnic National University
  • F. Honchar Lviv Polytechnic National University
  • F. Tsyupko Lviv Polytechnic National University

DOI:

https://doi.org/10.15330/pcss.22.1.117-122

Keywords:

optical constants, birefringence, electron band-energy structure

Abstract

The results of investigating of the electron band energy structure and optical properties of A4BX6 (Tl4HgI6 and Tl4CdI6) group crystals are presented. The energy band structures of Tl4HgI6 and Tl4CdI6 crystals are calculated from the first principles within generalized gradient approximation (GGA). The band structure and reflection index were calculated using a pseudopotential method in the framework of density functional theory. Optical absorption edge in Tl4HgI6 and Tl4CdI6 is formed by direct optical transitions. The spectral dependence of the reflection index was calculated on the basis of the energy band results with using the Kramers–Kronig method. The spectra show pronounced anisotropy in E||a(b) and E||c polarizations. It was found the anomalous by large values of the birefringence (Δn > 0.18 for Tl4HgI6 and Δn > 0.03 for Tl4CdI6) in the visible and near infrared region.

References

D. S. Kalyagin, Y. E. Ermolenko and Y. G. Vlasov, Russ. J. Appl. Chem., 81(81), 2172 (2008) (DOI: 10.1134/S1070427208120264).

D. Kahler, N. B. Singh, D. J. Knuteson, B. Wagner, A. Berghmans, S. McLaughlin, M. King, K. Schwartz, D. Suhre and M. Gotlieb, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 652(1), 183 (2011) (DOI: 10.1016/j.nima.2010.09.057).

K. I. Avdienko, D. V. Badikov, V. V. Badikov, V. I. Chizhikov, V. L. Panyutin, G. S. Shevyrdyaeva, S. I. Scherbakov and E. S. Scherbakova, Opt. Mater. (Amst)., 23(3–4), 569 (2003) (DOI: 10.1016/S0925-3467(03)00023-5).

S. Wang, Z. Liu, J. A. Peters, M. Sebastian, S. L. Nguyen, C. D. Malliakas, C. C. Stoumpos, J. Im, A. J. Freeman, B. W. Wessels and M. G. Kanatzidis, Cryst. Growth Des., 14(5), 2401 (2014) (DOI: 10.1021/cg5001446).

V. Franiv, Visnyk of the Lviv University, Series Physics, 48, 159 (2013).

A.I. Kashuba, T.S. Malyi, M.V. Solovyov, V.B. Stakhura, M.O. Chylii, P. Shchepanskyi and V.A. Franiv, Optics and Spectroscopy, 125(6), 853 (2018) (DOI: 10.1134/S0030400X18120081).

A.I. Kashuba, M.V. Solovyov, T.S. Maliy, I.A. Franiv, O.O. Gomonnai, O.V. Bovgyra, O.V. Futey, A.V. Franiv and V.B. Stakhura, Journal of physical studies, 22(2), 2701(1-4) (2014) (DOI: 10.30970/jps.22.2701).

V.A. Franiv, Z. Czapla, S. Dacko, A.V. Franiv and O.S. Kushnir, Ukr. J. Phys., 59(11), 1078 (2014).

M. Piasecki, G. Lakshminarayana, A. O. Fedorchuk, O. S. Kushnir, V. A. Franiv, A. V. Franiv, G. Myronchuk and K. J. Plucinski, J. Mater. Sci. Mater. Electron., 24(4), 1187 (2013) (DOI: 10.1134/S0030400X17070074).

M. Solovyov, A. Kashuba, V. Franiv, A. Franiv and O. Futey, in Proceedings of the IEEE International Young Scientific Forum on Appl. Phys. Engineer, pp. 17–20, October 2017 (DOI: 10.1109/YSF.2017.8126617).

A.I. Kashuba, M.V. Solovyov, A.V. Franiv, B. Andriyevsky, T.S. Malyi, V.B. Tsyumra, Ya.A. Zhydachevskyy, H.A. Ilchuk and M.V. Fedula, Low Temperature Physics, 46(10), 1039 (2020) (DOI: 10.1063/10.0001922).

A.I. Kashuba, R.Yu. Petrus, B.V. Andrievskyi, M.V. Solov’ev, I.V. Semkiv, T.S. Malyi, M.O. Chylii, V.B. Stakhura, P.A. Shchepanskyi and A.V. Franiv, Materials Science. 55(4), 602 (2020) (DOI: 10.1007/s11003-020-00345-w).

A. Kashuba, M. Solovyov, T. Malyi, I. Semkiv and A. Franiv, in Proceedings of XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), pp. 272–276, September 2019. (DOI: 10.1109/ELIT.2019.8892315).

V. Franiv, O. Bovgyra, O. Kushnir, A. Franiv and K. J. Plucinski, Opt. Appl., XLIV(2), 317 (2014) (DOI: 10.5277/oa140212).

D. Vanderbilt, Phys. Rev. B., 41(11), 7892 (1990) (DOI: 10.1103/PhysRevB.41.7892).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78(7), 1396 (1997) (DOI: 10.1103/PhysRevLett.78.1396).

I. V. Semkiv, B. A. Lukiyanets, H. A. Ilchuk, R. Yu. Petrus, A. I. Kashuba and M. V. Chekaylo, J. Nano- Electron. Phys., 8(1), 01011(1-5) (2016) (DOI: 10.21272/jnep.8(1).01011).

H. J. Monkhorst and J. D. Pack, Phys. Rev. B., 13(12), 5188 (1976) (DOI: 10.1103/PhysRevB.13.5188).

A. Kashuba, B. Andriyevskyy, I. Semkiv, L. Andriyevska, R. Petrus, E. Zmiiovska and D. Popovych, J. Nano- Electron. Phys., 10(6), 06025(1-4) (2018) (DOI: 10.21272/jnep.10(6).06025).

W. Kohn and L. J. Sham, Phys. Rev. A., 140(4), 1133 (1965) (DOI: 10.1103/PhysRev.140.A1133).

R.Yu. Petrus, H.A. Ilchuk, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska and F.M. Honchar, Journal of Applied Spectroscopy, 87(1), 35 (2020) (DOI: 10.1007/s10812-020-00959-7).

H. Ilchuk, R. Petrus, A. Kashuba, I. Semkiv and E. Zmiiovska, Molecular Crystals and Liquid Crystals, 699(1), 1 (2020) (DOI: 10.1080/15421406.2020.1732532).

R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv and E. Zmiiovska, Funct. Mater., 27(2), 342 (2020) (DOI: 10.15407/fm27.02.342).

Z.R. Zapukhlyak, L.I. Nykyruy, V.M. Rubish, G. Wisz, V.V. Prokopiv, M.O. Halushchak, I.M. Lishchynsky, L.O. Katanova and R.S. Yavorskyi, Physics and Chemistry of Solid State, 21(4), 660 (2020).

H.A. Ilchuk, A.I. Kashuba, R.Y. Petrus, I.V. Semkiv and V.G. Haiduchok, Journal of Physical Studies, 24(3), 3705(9) (2020) (DOI: 10.30970/jps.24.3705).

R. Yavorskyi, L. Nykyruy, G. Wisz, P. Potera, S. Adamiak, and S. Górny, Applied Nanoscience, 9(5), 715 (2019) (DOI: 10.1007/s13204-018-0872-z).

A.V. Franiv, V.Y. Stadnyk, A.I. Kashuba, R.S. Brezvin, O.V. Bovgira and A.V. Futei, Optics and Spectroscopy, 123(1), 177(2017) (DOI: 10.1134/S0030400X17070074).

A.I. Kashuba, A.V. Franiv, R.S. Brezvin and O.V. Bovgyra, Functional materials, 23(4), 26 (2017) (DOI: 10.15407/fm24.01.026).

L. Nykyrui, Y. Saliy, R. Yavorskyi, Y. Yavorskyi, V. Schenderovsky, G. Wisz, and S. Górny, in 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), pp. 01PCSI26-1, September 2017 (DOI: 10.1109/NAP.2017.8190161).

A.I. Kashuba and S.V. Apunevych, J. Nano- Electron. Phys., 8(1), 1010(1-5) (2016) (DOI: 10.21272/jnep.10(1).01013).

P.A. Shchepanskyi, O.S. Kushnir, V.Yo. Stadnyk, A.O. Fedorchuk, M.Ya. Rudysh, R.S. Brezvin, P.Yu. Demchenko and A.S. Krymus, Ukr. J. Phys. Opt., 18(4), 187 (2017) (DOI: 10.3116/16091833/18/4/187/2017).

P.A. Shchepanskyi, O.S. Kushnir, V.Yo. Stadnyk, R.S. Brezvin and A.O. Fedorchuk, Ukr. J. Phys. Opt., 19(3), 141 (2018) (DOI: 10.3116/16091833/19/3/141/2018).

Web-source: http://www.mt-berlin.com/frames_cryst/descriptions/birefringent.htm.

Downloads

Published

2021-03-12

How to Cite

Ilchuk, H., Solovyov, M., Lopatynskyi, I., Honchar, F., & Tsyupko, F. (2021). First principles DFT calculations of the optical properties of A4BX6 group crystals. Physics and Chemistry of Solid State, 22(1), 117–122. https://doi.org/10.15330/pcss.22.1.117-122

Issue

Section

Scientific articles

Most read articles by the same author(s)