Phase Equilibria of the MnTe-Sb2Te3 System and Synthesis of Novel Ternary Layered Compound – MnSb4Te7
DOI:
https://doi.org/10.15330/pcss.22.1.39-44Keywords:
MnTe-Sb2Te3 system, manganese antimony tellurides, magnetic topological insulators, X-ray diffraction, phase diagramAbstract
By using Differential Thermal Analysis (DTA) and Powder X-ray Diffraction (PXRD) techniques, the phase diagram of the MnTe-Sb2Te3 system has been constructed for the first time in the entire composition range. The system features two ternary layered van der Waals (vdW) compounds. Apart from known MnSb2Te4, novel MnSb4Te7 which a structural analogous of the known MnBi4Te7 was found in the system. Crystal structure parameters of both compounds were determined by Rietveld refinement using the fundamental parameter approach. Both compounds were found to decompose via peritectic reactions and possess significant homogeneity ranges. The title system is also characterized by the existence of the wide solid solution field based on the starting Sb2Te3. The present results would be useful for the bulk single crystal growth of both compounds from the liquid phase via the determination of primary crystallization areas.
References
L.L. Wang, D.D. Johnson, Phys. Rev. B 83(24), 241309 (2011) (https://doi.org/10.1103/PhysRevB.83.241309).
H. Shi, et al., Phys. Rev. Applied 3, 014004 (2015) (https://doi.org/10.1103/PhysRevApplied.3.014004).
B.Z. Rameshti, et al., Phys. Rev. B 94, 205401 (2016) (https://doi.org/10.1103/PhysRevB.94.205401).
N. Xu, et al., npj Quant. Mater. 2, 51 (2017) (https://doi.org/10.1038/s41535-017-0054-3).
W.Q. Zou, et al., Appl. Phys. Lett. 110, 212401 (2017) (http://doi.org/10.1063/1.4983684).
X.-L. Qi, S.-C. Zhang, : Phys. Today 63(1), 33 (2010) (https://doi.org/10.1063/1.3293411).
K. He, et. al., Annu. Rev. Condens. Matter Phys. 9, 329 (2018) (https://doi.org/10.1146/annurev-conmatphys-033117-054144).
Q. L. He, et al., Science 357, 294 (2017) (https://doi.org/10.1126/science.aag2792).
Y. Hou, R. Wu, Nano Lett. 19, 2472 (2019) (https://doi.org/10.1021/acs.nanolett.9b00047).
M. Mogi, et al., Nat. Mater. 16, 516 (2017) (https://doi.org/10.1038/nmat4855).
H.B. Zhang, et al., Adv. Mater. 24, 132 (2012) (https://doi.org/10.1002/adma.201103530).
J. Wang, et al., Nano Res. 5, 739 (2012) (https://doi.org/10.1007/s12274-012-0260-z).
J. Wu, et al., Sci. Adv. 5(11), eaax9989 (2019) (https://doi.org/10.1126/sciadv.aax9989).
Y. Tokura, et. al., Nat. Rev. Phys. 1, 126 (2019) (https://doi.org/10.1038/s42254-018-0011-5).
R.S.K. Mong, J.E. Moore, Nature 576(7787), 390 (2019) (https://doi.org/10.1038/d41586-019-03831-7).
V. Litvinov, Magnetism in Topological Insulators (Springer International Publishing, 2020).
C.Z. Chang, et al., Science 340(6129), 167 (2013) (https://doi.org/10.1126/science.1234414).
C. Z. Chang, et al., Nat. Mater. 14, 473 (2015) (https://doi.org/10.1038/nmat4204).
J. Teng, et al., J. Semicond. 40(8), 081507 (2019) (https://doi.org/10.1088/1674-4926/40/8/081507).
J. Ge, et al., Solid State Commun. 2011, 29 (2015) (https://doi.org/10.1016/j.ssc.2015.03.012).
T. Hesjedal and Y. Chen. Nature Mater. 16, 3 (2017) (https://doi.org/10.1038/nmat4835).
M.M. Otrokov, et al., Nature 576, 416 (2019) (https://doi.org/10.1038/s41586-019-1840-9).
Z.S. Aliev, et al., J. Alloys Compd. 789, 443 (2019) (https://doi.org/10.1016/j.jallcom.2019.03.030).
Z.A. Jahangirli, et al., J. Vac. Sci. Technol. 37(6), 062910 (2019) (https://doi.org/10.1116/1.5122702).
I.I. Klimovskikh, et al., npj Quantum Mater. 5, 54 (2020) (https://doi.org/10.1038/s41535-020-00255-9).
D.A. Estyunin, et al., APL Materials 8, 021105 (2020) (https://doi.org/10.1063/1.5142846).
E.N. Orujlu, New Mater., Comp. App. 4(1), 38 (2020).
J.-Q. Yan, et al., Phys. Rev. B100(10), 104409 (2019) (https://doi.org/10.1103/PhysRevB.100.104409).
L. Chen, et all., J. Mater. Sci. 55(29), 14292 (2020) (https://doi.org/10.1007/s10853-020-05005-7).
T. Murakami, et al., Phys. Rev. B 100, 195103 (2019) (https://doi.org/10.1103/PhysRevB.100.195103).
L. Zhou, et all., Phys. Rev. B 102, 085114 (2020) (https://doi.org/10.1103/PhysRevB.102.085114).
G. Shi, et all., Chinese Phys. Lett. 37(4), 047301 (2020) (https://doi.org/10.1088/0256-307X/37/4/047301).
N.Kh. Abrikosov, et al., Inorg. Mater. (USSR) 4, 1638 (1968).
D.Mateika, J. Cryst. Growth 13-14, 698 (1972) (https://doi.org/10.1016/0022-0248(72)90544-1).
F. Grønvold, et al., J. Chem. Thermodyn. 4(6), 795 (1972) (https://doi.org/10.1016/0021-9614(72)90001-8)
N.H. Abrikosov, et al, Nauka (USSR), 220 1975 (in Russian).
T. L. Anderson, H. B. Krause, Acta Cryst. B30, 1307 (1974) (https://doi.org/10.1107/S0567740874004729).