Nanostructured mesoporous g-Fe2O3: a novel photocatalyst for degradation of organic pollutants
DOI:
https://doi.org/10.15330/pcss.22.1.101-109Keywords:
nanostuctured maghemite, mesoporous structure, conductivity, specific surface area, band gap, photocatalystAbstract
The modified sol-gel synthesis technique was used to created of nanostructured maghemite (γ-Fe2O3). It has been shown that the molar concentration of the original precursors during synthesis affects on the average particle sizes, specific surface area, pore size distributions, optical and conductivity properties. The XPS metod allowed to establish features of electronic structure of the synthesized materials. Optimal conditions for the synthesis of nanostructured maghemite with mesoporous structure were selected. The mechanism of electrical conductivity formation for synthesized mesoporous materials was established. The width of the band gap is determined and its dependence on the molar concentration of precursors is established. The positive correlation between the specific surface area of γ-Fe2O3 samples and photocatalytic activity was installed - the photocatalytic activity of synthesized γ-Fe2O3 increase with growth of specific surface area of γ-Fe2O3 samples.
References
S.W. Cao, Y.J. Zhu, M.Y. Ma, L. Li, L, Zhang, J. Phys. Chem. C. 112(6), 1851 (2008) (DOI: 10.1021/jp077468+).
M. Levy, C. Wilhelm, J.M. Siaugue, O. Horner, J.C. Bacri, F. Gazeau, J. Phys. Condens. Matter. 20(6), 204133 (2008) (DOI: 10.1088/0953-8984/20/20/204133).
S. Capone, M.G. Manera, A. Taurino, P. Siciliano, R. Rella, S. Luby, E. Majkova, Langmuir 30(4), 1190 (2014) (DOI: 10.1021/la404542u).
Yu.V. Yavorsky, Ya.V. Zaulichny, V.M. Gunko, M.V. Karpets, Journal Of Nano- And Electronic Physics 10(6), 06005 (2018) (DOI: 10.21272/jnep.10(6).06005).
Yu. V. Yavorskyi, Ya. V. Zaulychnyy, М. V. Karpets, А. B. Hrubiak, V. V. Moklyak, О. І. Dudka, Ya. А. Kononenko, Physics and Chamistry of Solid State 20(4) (DOI: 10.15330/pcss.20.4.360-366).
V. Kotsyubynsky, B. Ostafiychuk, V.Moklyak, A. Hrubiak, Solid State Phenomena 230, 120 (2015) ) (DOI: 10.4028/www.scientific.net/SSP.230.120).
O.Y. Khyzhun, V.L. Bekenev, V.V. Atuchin, E.N. Galashov, V.N. Shlegel, Mater. Chem. Phys. 140(2-3), 588 (2013) (DOI: 10.1016/j.matchemphys.2013.04.010).
S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, J. Alloys. Compd. 493(1-2), 340 (2010) (DOI: 10.1016/j.jallcom.2009.12.099).
D. Briggs, P.M. Seach, Practical Surface Analysis (2nd Ed.): Auger and X-Ray Photoelectron Spectroscopy, Chichester, John Willey & Sons Ltd, 1990.
T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon 43(1), 153 (2005) (DOI: 10.1016/j.carbon.2004.08.033).
Jonscher, A.K. (Universal Relaxation Law, London: Chelsea Dielectrics Press, UK, 1996.
N.F. Mott, J. Non-Cryst. Solids. 1(1), 1 (1968) (DOI: 10.1016/0022-3093(68)90002-1).
K.M. Rosso, M. Dupuis, J. Chem. Phys. 120(15), 7050 (2004). (DOI: 10.1063/1.1676117).
S.R. Elliott, Philos. Mag. 36(6), 1291 (1977) (DOI: 10.1080/14786437708238517).
R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Weinheim, Wiley-VCH Verlag GmbH & Co, 2003.
Cabot, V.F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, M.A. Marcus, S.M. Hughes, A.P. Alivisatos, J. Am. Chem. Soc. 129(34), 10358 (2007) (DOI: 10.1021/ja072574a).
K.S. Jung, K.W. Sung, Magnetite: Electrochemical Properties And Its Role On Flow Accelerated Corrosion, Magnetite: Structure, Properties and Applications; Nova Science Publishers, New York, 2010.
L.E. Brus, J. Chem. Phys. 79(11), 5566 (1983) (DOI: 10.1063/1.445676).
T.D. Glotch, G.R. Rossman, Icarus 204(2), 663 (2009) (DOI: 10.1016/j.icarus.2009.07.024).
V. Kotsyubynsky, A. Grubiak, V. Moklyak, V. Pylypiv, R. Lisovsky, Metallofizika i Noveishie Tekhnologii 36(11), 1497 (2014) (DOI: 10.15407/mfint.36.11.1497).
L. Kieush, M.Boyko, A.Koveria, A.Khudyakov, A. Ruban, Eastern-European Journal of Enterprise Technologies 1(6), 34 (2019) (DOI: 10.15587/1729-4061.2019.154082).