Calculation of the Stability and Reconstruction of the Crystal Surface within DFT-Calculations

Authors

  • B.P. Naidych Vasyl Stefanyk Precarpathian National University

DOI:

https://doi.org/10.15330/pcss.19.3.254-257

Keywords:

lead sulfide, DFT, methods of computer quantum chemistry, reorganization of the thin films’ surface

Abstract

The thin films’ surface is not perfect, so its properties and properties of the massive part of the film will
differ significantly. Since a regularity in the formation of surface irregularities is observed, then the possibilities
of computer modeling can be used to study such structures. To reproduce the surface of crystals with a NaCl
structure, one can apply the same approaches in modeling properties as for metal oxides. The fundamental
difference from the previous studies is in considering the structure in the direction (111), since such assumptions
allows to use a smaller simulation cell for computer calculations, which greatly speed them up. Approbation of
the technique of repositioning the surface of lead sulfide thin films has been carried out.

References

C.T. Campbell, S.C. Parker, D.E. Starr, Science 298, 811 (2002).

G. Ertl, Angew Chem Int Ed Engl 47, 3524 (2008).

T. Bligaard, J.K. Nørskov In Chemical Bonding at Surfaces and Interfaces, eds A. Nilsson, L.G.M. Petterson,

J.K. Nørskov (Elsevier, Amsterdam), 1st Ed (2008).

J.X. Ma, Y. Jia, Y.L. Song, E.J. Liang, L.K. Wu, F. Wang, X.C. Wang, X. Hu, Surface science 551(1-2), 91 (2004).

P.W. Tasker, Journal of Physics C: Solid State Physics 12(22), 4977(1979).

R.E. Taylor, F. Alkan, D. Koumoulis, M.P. Lake, D. King, C. Dybowski, L.S. Bouchard, The Journal of

Physical Chemistry C 117(17), 8959 (2013).

V.L. Deringer, R. Dronskowski, The Journal of Physical Chemistry C 117(46), 24455 (2013).

V.L. Deringer, R. Dronskowski, ChemPhysChem 14(13), 3108 (2013).

I.V. Zaporotskova, Carbon and non-carbon nanomaterials and composite structures based on them: structure and electronic properties: [monograph] (VolGu Publishing House, Volgograd, 2009).

C. Franchini, V. Bayer, R. Podloucky, G. Parteder, S. Surnev, and F.P. Netzer Physical Review B 73, 155402 (2006).

V.L. Deringer, R. Dronskowski, J. Phys. Chem. C 120 (16), 8813 (2016).

D. Wolf, Physical Review Letters 68 (22), 3315 (1992).

H.M. Evjen, Phys. Rev. 39, 675 (1932).

J.H.R. Clarke, W. Smith, and L.V. Woodcock, J. Chem. Phys. 84, 2290 (1984).

R. Lacman, Colloq. Int. C. N. R. S. 152, 195 (1965).

A.E. Mohammed, A.Y. Ghaly, O.M. Frege Acta Physica Polonica A 80(4), 591 (1991).

P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921).

L.I. Nykyruy, T.O. Parashchuk, B.P. Volochanska Chalcogenide Letters 13 (6), 239 (2016).

V.L. Deringer, R. Dronskowski, The Journal of Physical Chemistry C 117(46), 24455 (2013).

Published

2018-10-04

How to Cite

Naidych , B. (2018). Calculation of the Stability and Reconstruction of the Crystal Surface within DFT-Calculations . Physics and Chemistry of Solid State, 19(3), 254–257. https://doi.org/10.15330/pcss.19.3.254-257

Issue

Section

Scientific articles