Viscoelastic Properties of Filled Polyurethane Auxetics
DOI:
https://doi.org/10.15330/pcss.22.2.328-335Keywords:
polymer auxetic, lateral and extension ultrasonic waves, Poisson’s ratio, viscoelastic Young’s modulus, mechanical loss tangent of angle, complex density structure, resonance effectAbstract
The paper presents experimental values of lateral and extension transmission ultrasonic waves speed and their absorbance coefficient obtained with the help of discrete immersed method in metal filled polymer auxetic samples with polyurethane matrix. Poisson’s ratio, real and imaginary parts of complex dynamic elastic modulus (Young’s modulus, shear modulus, bulk modulus) and mechanical losses tangent of angle for extension, lateral and bulk deformation have been calculated regarding paper’s results. Viscoelastic properties of polyurethane auxetic have been examined regarding different theoretical approaches. To support negative values of Poisson’s ratio, a filled polymer model with critical filler amount and auxetic deformation models have been used. Models structural characteristics for filled polyurethane auxetics have been defined. Systems modeling with solid bulky inclusions, that are able to absorb and to disseminate ultrasonic waves, enables to consider suchlike systems as complex density materials. It is shown that in certain ratio of wave parameters and environment structural and mechanical properties, resonance effects take place, regarding filler’s particles vibration as inclusions in general.
References
N. Novak, M. Borovinsek, M. Vesenjak, C. Körner, S. Tanaka, K. Hokamoto, Z. Ren, Phys. Status Solidi B 256(1), 1800040 (2019); https://doi.org/10.1002/pssb.201800040.
Z. Wang, H. Hu, Textile Research Journal 84(15), 1600 (2014); https://doi.org/10.1177%2F0040517512449051.
R. Magalhaes, P. Subramani, T. Lisner, S. Rana, B. Ghiassi, R. Fangueiro, D.V. Oliveira, P.B. Lourenco, Composites Part A: Applied Science and Manufacturing 87, 86 (2016); https://doi.org/10.1016/j.compositesa.2016.04.020.
J. Ou, Z. Ma, J. Peters, S. Dai, N. Vlavianos, H. Ishii, Computers & Graphics 75, 72 (2018); https://doi.org/10.1016/j.cag.2018.06.003.
K.W. Wojciechowski, F. Scarpa, J.N. Grima, A. Alderson, Phys. Status Solidi B 256, 1800736 (2019); https://doi.org/10.1002/pssb.201800736.
J.-W. Jiang, S.Y. Kim, H.S. Park, Applied Physics Reviews 3(4), 041101 (2016); https://doi.org/10.1063/1.4964479.
M.D. Raranskyi, V.N. Balazyuk, М.М. Gunyko, F.Ya. Struk, Easten-European Journal of Enterprise Technologies 5(5), 18 (2015); https://doi.org/10.15587/1729-4061.2015.51345.
X. Ren, X. Zhang, Y. Xie, Chinese Journal of Theoretical and Applied Mechanics 51(3), 656 (2019); https://doi.org/10.6052/0459-1879-18-381.
Y.K. Yi, R. Sharston, D. Barakat. Auxetic, J. of Facade Design and Engineering 7(1), 063 (2019); https://doi.org/10.7480/jfde.2019.1.2620.
C. Thill, J. Etches, I. Bond, K. Potter, P. Weaver, The Aeronautical Journal 112(1129), 117 (2008); https://doi.org/10.1017/S0001924000002062.
O. Duncan, T. Shepherd, Ch. Moroney, L. Foster, P.D. Venkatraman, K. Winwoo, T. Allen, A. Alderson, Applied Sciences 8(6), 941 (2018); https://doi.org/10.3390/app8060941.
R. Naboni, L. Mirante, XIX Congresso da Sociedade Ibero-americana de Gráfica Digital (2015) p.129; https://doi.org/10.5151/despro-sigradi2015-30268.
B. Brandel, R.S. Lakes, J. Materials Science 36(24), 5885 (2001); https://doi.org/10.1023/A:1012928726952.
Y. Liu, H. Hu, Scientific Research and Essays 5(10), 1052 (2010); https://doi.org/10.5897/SRE.9000104.
B. Moore, T. Jaglinski, D.S. Stone, R.S. Lakes, Cellular Polymers 26(1), 1 (2007); https://doi.org/10.1177%2F026248930702600101.
S.K. Bhullar, e-Polymers 15(4), 205 (2015); https://doi.org/10.1515/epoly-2014-0193.
Y.T. Yao, K.L. Alderson, A. Alderson, Cellulose 23(6), 3429 (2016); https://doi.org/10.1007/s10570-016-1069-9.
E.P. Degabriele, D. Attard, J.N. Grima-Cornish, R. Caruana-Gauci, R. Gatt, K.E. Evans, J.N. Grima, Phys. Status Solidi B 256(1), 1800572 (2019); https://doi.org/10.1002/pssb.201800572.
J.N. Grima, D. Attard, B. Ellul, R. Gatt, Cellular Polymers 30(6), 287 (2011); https://doi.org/10.1177%2F026248931103000602.
Y.-C. Wang, R.S. Lakes, A. Butenhoff, Cellular Polymers 20(4), 373 (2001); https://doi.org/10.1177%2F026248930102000601.
A. Cornillea, S. Dworakowskab, D. Bogdalb, B. Boutevina, S. Caillol, European Polymer Journal 66, 129 (2015); https://doi.org/10.1016/j.eurpolymj.2015.01.034.
T. Lee, R.S. Lakes, Journal of Materials Science 32, 2397 (1997) https://doi.org/10.1023/A:1018557107786.
E.O. Martz, R.S. Lakes, J.B. Park, Cell. Polym. 15, 349 (1996).
F. Scarpa, J. Giacomin, Y. Zhang, P. Pastorino, Cellular Polymers 24(5), 253 (2005); https://doi.org/10.1177%2F026248930502400501.
F. Scarpa, J.R. Yates, L.G. Ciffo, S. Patsias, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 216(12), 1153 (2002) https://doi.org/10.1243%2F095440602321029382.
T. Lee, R.S. Lakes, Journal of Materials Science 32, 2397 (1997); https://doi.org/10.1023/A:1018557107786.
T. M. Shevchuk, M. A. Bordyuk, V. V. Krivtsov, and V. A. Mashchenko, Metallofiz. Noveishie Tekhnol. 42 (9), 1293 (2020); https://doi.org/10.15407/mfint.42.09.1293.
B.S. Kolupaev, Yu.S. Lypatov, V.Y. Nykytchuk, N.A. Bordyuk, O.M. Voloshyn, Inzh.-Fiz. Zhurnal 69(5), 726 (1996).
N.A. Bordyuk, S.M. Gusakovskii, S.N. Ivashchuk, B.S. Kolupaev, Acoustical Physics 44(1), 15 (1998).
N.A. Bordyuk, S.N. Ivanishchuk, B.S. Kolupaev, Yu.S. Lipatov, Polymer Science, Series A 39(12), 1295 (1997).
J.J. Rushchitsky, Mathematical Modeling and Computing 1(1), 97 (2014); http://nbuv.gov.ua/UJRN/mmc_2014_1_1_10.
B.S. Kolupayev, N.A. Bordyuk, Polymer Science U.S.S.R. 23(7), 1652 (1981) https://doi.org/10.1016/0032-3950(81)90401-9.
T.-Ch. Lim, Materials 12(3), 429 (2019); https://doi.org/10.3390/ma12030429.
R.V. Viktorov, V.V. Tyutekin, Acoustic Journal 44 (3), 3331 (1998).