Ostwald Ripening of Nanodispersed Phases in Metal Alloys (review)
DOI:
https://doi.org/10.15330/pcss.20.2.101-119Keywords:
nanoparticle, Ostwald ripening, Lifshitz-Slezov-Wagner theory, nanocrystal, cluster, size distribution functionAbstract
The review deals with analysis of the kinetics of Ostwald ripening of nanodispersed phases in metal alloys when the growth (dissolution) of the nanoparticles of the reinforcing phase is controlled simultaneously by the matrix diffusion, diffusion through the dislocation tubes and the rate of the atoms transition through the interphase boundary (Wagner's mechanism of growth). As a rule, different mechanisms of the nanoparticles growth (dissolution) are simultaneously employed in the process of the particles ripening while the number of the mechanisms involved in the growth (one, two or three) depends on various factors such as: chemical composition of the nanodispersed phases, conditions of exploitation (changes in mechanical loads, temperature regimes, environmental conditions), technological conditions of synthesis, etc. The possibility of practical implementation of the proposed mechanisms of growth of nanoparticles in the Ostwald ripening process can be confirmed or declined by a comparison between the experimental and theoretical data. As seen from the comparison between some experimental histograms with the lines built theoretically, the proposed mechanisms of growth of the dispersed phase nanoparticles seem realistic.
References
U. Hartmann, A Charm of Nanotechnology (BINOM, Laboratory of Knowledge, Moscow, 2008).
W. Ostwald, Zs. Phys. Chem. 34, 495 (1900).
I.M. Lifschitz, V. V. Slezov, J. Exper. & Theor. Phys. 35, 479 (1958).
I.M. Lifshits, V.V. Slesov, J. Phys. & Chem. Solids 19 (1/2), 35 (1961).
C . Wagner,Zeitschrift für elektrochemie 65 (7), 581 (1961).
V.V. Slezov, Solid State Physics 9, 1187 (1967).
H.O.K. Kirchner, Metall. Trans. 2, 2861 (1971) (doi.org/10.1007/BF02813264).
B.K.Chakraverty, J. Phys. Chem. Solids 28, 2401 (1967) (doi.org/10.1016/0022-3697(67)90026-1).
R.D. Vengrenovich, Ukr. J. Phys. 22, 219 (1977).
H. Kreye, Zs. Metallkunde 61 (2), 108 (1970).
A.J. Ardell, Acta Metall. 20, 602 (1972) (doi.org/10.1016/0001-6160(72)90015-6).
R.D. Vengrenovich, Phys. Metal. & Metal, Studies. 39 (2),436 (1975).
R.D. Vengrenovich, Yu. V. Gudyma, S. V. Yarema, Phys. Metal. & Metal, Studies. 91, 16 (2001).
R.D.Vengrenovich, Yu.V.Gudyma, S.V. Yarema, Scripta Materialia 46, 363 (2002) (doi.org/10.1016/S1359-6462(01)01252-0).
A.V. Koropov, Sci. Bull. of Sumy Univ. Series: Physics, Mathematics, mechanics 6, 01025 (2014).
A.V. Koropov, Sci. Bull. of Sumy Univ. Series: Physics, Mathematics, mechanics 93, 49 (2006).
A.V. Koropov, Solid State Phys. 50, 2093 (2008).
A.V. Koropov, J. Nano- & Electronic. Phys. 2, 31 (2010).
A.V. Koropov. J. Exper. & Theor. Phys. 81, 83 (2011).
A. Markworth, Metall. Trans 4, 2651 (1973) (DOI: 10.1007/BF02644271).
P.N. Ostapchuk, V.V. Slezov, V.V. Sagalovich, Physics of Radiation Damages and Radiation Material Studies. 28, 27 (1983).
R.D. Vengrenovich, B.V. Ivanskii, M.O. Stasyk, S.V. Yarema, A.V. Moskaliuk, I.I. Panko, V.I. Kryvetskyi, I.V. Fesiv 116
A.V. Koropov, V.V. Slezov, V.V. Sagalovich, Surface. Physics, Chemistry & Mechanics 2, 63 (1982).
A.M. Gusak, G.V. Lutsenko, Physics of Metals and Newest Technologies 25, 381 (2003).
M.O. Pasichnyi, A.M. Gusak. Physics of Metals and Newest Technologies. 27, 1001 (2005).
R.D. Vengrenovich, B.V. Ivanskii, A.V. Moskalyuk, J. Exper. & Theor. Phys. 131, 1040 (2007).
R.D.Vengrenovich, B.V. Ivanskii, A.V. Moskalyuk, [end etc.], Mass Transfer – Advanced Aspects, edited by Hironory Nakajama (In Tech – Open Access Publisher,Croatia, 2011).
R.D. Vengrenovich, B.V.Ivanskii, I.I.Panko, M.O.Stasyk, J. Phys. Chem. C. 117, 13681 (2013) (doi.org/10.1021/jp402729h).
R.D. Vengrenovich, B.V. Ivanskii, A.V. Moskalyuk, Ukr. J. Phys. 11, 1102 (2008).
R.D. Vengrenovich, Acta Metall. 20, 1079 (1982) (DOI: 10.1016 / 0001-6160 (82) 90004-9).
B.V. Ivanskii, A.V. Moskalyuk, S.V. Yarema, I.I. Panko, M.O. Stasyk, ISRN Nanomaterials 2013, 8 (2013).
R.D.Vengrenovich,Yu.V. Gudymaand, S.V. Yarema, Scripta Materialia 46, 363 (2002) (doi.org/10.1155/2013/651576).
T.Philippe, P.W. Voorhees, Acta Materialia 61, 4237 (2013) (doi.org/10.1016 / j.actamat.2013.03.049).
H.Y. Jian, K.R. Elder, G. Hong, G. Martin, Phys. Rev. B. 47, 14110 (1993) (doi.org/10.1103/PhysRevB.47.14110).
S.A.Kukushkin, D.A. Grigoriev, J. Phys. & Chem. Solids 61, 1337 (2000) (DOI: 10.1016 / S0022-3697 (99) 00422-9).
I.L.Maksimov, P.Y. Gubanov, Philosophical Magazine Letters 88, 115 (2008) (doi.org/10.1080/09500830701528727).
A.V. Koropov, J. Nano- Electron. Phys 4, 03013 (2012).
S. Sapra, D.D. Sarma, Phys. Rev. B. 69, 125304 (2004) (doi.org/10.1103/PhysRevB.69.125304).
R. Viswanatha, H. Amenitsch, D.D. Sarma, J. Am. Chem. Soc. 129, 4470 (2007) (doi.org/10.1021/ja068161b).
R. Viswanatha, P.K. Santra, C. Dasgupta, D.D. Sarma, Phys. Rev. Lett. 98, 255501 (2007) (doi.org/10.1103/PhysRevLett.98.255501).
A.K. Simonyan, J. Contemp. Phys. 48, 220 (2013) (DOI: 10.3103 / S106833721305006X).
R.D.Vengrenovich, B.V. Ivanskii, I.I. Panko, Yu.M. Kushnir, V.I.Kryvetskyi, J. Contemp. Phys. 49, 158 (2014) (DOI: 10.3103/S1068337214040045).
S. Gwo, Ch.P. Chou, Ch.L. Wu etc. Phys. Rev. Lett. 90, 185506 (2003) (DOI:10.1103 / PhysRevLett.90.185506).
R.D. Vengrenovich, B.V. Ivanskii, A.V. Moskalyuk, Opto-electronics review 18, 168 (2010) (DOI:10.2478/s11772−010−0001−3).
R.D. Vengrenovich, B.V. Ivanskii, S.V. Yarema, I.I. Panko, M.O. Stasyk, A.V. Moskalyuk, Applied Optics 53, B87 (2014) (doi.org/10.1364/AO.53.000B87).
G.M. Novotny, A.J. Ardell, Material Science and Engineering A. 318, 144 (2001).
J.P.Stobrawa, Z.M. Rdzawski, Journal of Achievements in Materials and Manufacturing Engineering 15, 21 (2006).
B.A. Pletcher, K.G. Wang, M.E. Glicksman, Acta Materialia 60, 5803 (2012) (DOI:10.1016/j.actamat.2012.07.021).