The study of the behavior of Al impurity in ZnO lattice by a fullerene like model
DOI:
https://doi.org/10.15330/pcss.22.2.204-208Keywords:
Fullerene like model, Zinc Oxide, Al Ionization energy, ; Native defects formation energies, ZnO packing defectsAbstract
The fullerene like Zn32Al4O36 clusters were investigated and the oxygen interstitial Oi acceptor intrinsic defect formation energy as well as Al ionization energy were calculated. The effect of lattice packing defects on the electroactivity of Al impurity was investigated. Analysis of the defects formation energies shows the smaller formation energy of interstitial Oi in a comparison with a formation of Zn vacancy. This allows us to formulate recommendations of technological conditions for films deposition, with improved electroactivity of Al donor.
References
Ievtushenko A., Khyzhun O., Shtepliuk I., and et. al. X-Ray photoelectron spectroscopy study of highly-doped ZnO:Al,N films grown at O-rich conditions, Journal of Alloys and Compounds 2017; 722: 683-689 (https://doi.org/10.1016/j.jallcom.2017.06.169 ).
Dmytruk A., Dmitruk I., Kasuya A. Zinc peroxide precursor for ZnO clusters, Materials Science & Engineering Technology 2009;40(4):265-267 (https://doi.org/10.1002/mawe.200800438 ).
Dmytruk A., Dmitruk I., Blonskyy I., and et. al. ZnO clusters: Laser ablation production and time-of-flight mass spectroscopic study, Microelectronics Journal 2009; 40:218–220 (https://doi.org/10.1016/j.mejo.2008.07.010 ).
Ovsiannikova L. I. Model and properties of fullerene-like and wurtzite-like ZnO and Zn(Cd)O clusters, Acta Physica Polonica A 2012; 122:1062-1064 (https://doi.org/10.12693/APhysPolA.122.1062 ).
Ovsiannikova L. I. The Investigation of the Cadmium Effect on Properties of ZnCdO Alloys Using Zn36-xCdxO36 Clusters, Acta Physica Polonica A 2014; 126:1090-1092 (https://doi.org/10.12693/APhysPolA.126.1090 ).
Ovsiannikova L., Kartuzov V., Shtepliuk I. and et. al. Study of the Clusterization of CdO Phase in ZnCdO Alloys by Modeling Fullerene-Like Zn44Cd4O48 Cluster, Acta Physica Polonica A 2016;129:A41 – 43 (https://doi.org/10.12693/APhysPolA.129.A-41 ).
Shtepliuk I., Khranovskyy V., Lashkarev G. and et. al. Electrical properties of n Zn0.94Cd0.06O/p SiC heterostructures, Solid-State Electronics 2013;81:72 - 77 (https://doi.org/10.1016/j.sse.2013.01.015 ).
Ovsiannikova L., Dranchuk M., Lashkarev G. and et. al. Study of donor Al impurity state in ZnO by fullerene like model, Superlattice and Microstructures 2017;107:1-4 (https://doi.org/10.1016/j.spmi.2017.03.054 ).
Huzinaga S., Andzelm J., Klobukowski M. and et. al. Gaussian basis sets for molecular calculations Elsevier, Amsterdam, 1984.
Messmer R. P., Watkins G. D. Molecular-orbital treatment for deep levels in semiconductors: substitutional nitrogen and the lattice vacancy in diamond, Phys. Rev. B 1973;7:2568-2591 (https://doi.org/10.1103/PhysRevB.7.2568 ).
Schmidt M. W., Baldridge K. K., Boatz J. A. and et. al. General atomic and molecular electronic structure system, J. Comput. Chem. 1993;14:1347–1363 (https://doi.org/10.1002/jcc.540141112 ).
Portmann S. Lüthi H.-P. MOLEKEL: An interactive molecular graphics tool. CHIMIA International Journal for Chemistry 2000;54:766-770.
Ievtushenko A. I., Bykov O. I., Klochkov L. O. and et. al. The influence of oxygen pressure on ZnO:Al thin films properties grown by layer by layer growth method at magnetron sputtering, Physics and Chemistry of Solid State 2015;16(4):667-674 (https://doi.org/10.15330/pcss.16.4.667-674 ).