Structural, electrical and magnetic properties of substituted pyrochlore oxide nanoparticles synthesized by the co-precipitation method

Authors

  • M.B. Khanvilkar Savitribai Phule Pune University
  • A.K. Nikumbh Savitribai Phule Pune University
  • S.M. Patange Shrikrishna Mahavidyalaya, Gunjoti
  • R.A. Pawar Savitribai Phule Pune University
  • N.J. Karale Savitribai Phule Pune University
  • D.V. Nighot Savitribai Phule Pune University
  • P.A. Nagwade Savitribai Phule Pune University
  • M.D. Sangale Savitribai Phule Pune University
  • G.S. Gugale Savitribai Phule Pune University

DOI:

https://doi.org/10.15330/pcss.22.2.353-371

Keywords:

substituted pyrochlore-type oxides, ferromagnetism, electrical conductivity, Magnetization, exchange interaction, coprecipitation

Abstract

Five substituted pyrochlore nanooxides such as Nd1.9Ho0.1Zr1.8Ce0.2O7, La1.95Ce0.05Zr0.29Ce1.71O7, Y1.79Pr0.21Ru1.99Pr0.01O7, Dy1.9Yb0.1Mn1.93Cu0.07O7 and Dy1.99Sr0.01Sn2O7 were synthesized by coprecipitation method. These precursors were monitored by thermal studies (TGA-DTA). The prepared nanosized substituted pyrochlore oxides were characterized by EDS, XRD, SEM, TEM, d. c. electrical conductivity, Thermoelectric power, Hall effect measurement, dielectric properties and magnetization measurements. XRD confirmed the formation of a single phase crystalline substituted pyrochlores with a cubic nature of nanoparticles. All substituted compounds were adopted a stable pyrochlore structure with rA3+/rB4+ = 1.395 except La1.95Ce0.05Zr0.29Ce1.71O7 compound, which has rA3+/rB4+ = 1.175 indicate disorder pyrochlore structure (i.e. fluorite structure). The temperature dependence of d. c. electrical conductivity for all substituted pyrochlores exhibits two distinct slopes with a break. This discontinuity can be attributed to extrinsic to intrinsic semiconducting properties. The thermoelectric power and Hall effect measurements for all compounds were confirmed the p-type semiconductivity except Y1.79Pr0.21Ru1.99Pr0.01O7 compound and which showed n-type semiconductivity. The dielectric constant (ε) and dielectric loss (tan δ) i. e dissipation factor decreases with an increase in frequencies and reaching constant at particular frequencies. The applied field dependence of magnetization curve at room temperature (300 K) for Nd1.9Ho0.1Zr1.8Ce0.2O7, Y1.79Pr0.21Ru1.99Pr0.01O7 and  Dy1.9Yb0.1Mn1.93Cu0.07O7, showed hysteresis loop with a small kink around the origin and which can be attributed to small but definite ferromagnetic ordering along with significant paramagnetic and superparamagnetic components. The magnetization at 2K showed a clear hysteresis loop for Dy1.9Yb0.1Mn1.93Cu0.07O7 and Dy1.99Sr0.01Sn2O7 pyrochlores are soft (weak) ferromagnets.

References

J.E. Greedan, J. Mater. Chem. 11, 37 (2001); https://doi.org/10.1039/B003682J.

M.A. Subramanian, A.W. Sleight, Handbook on the Physics and Chemistry of Rare Earth 16, 225 (1993).

F. Brisse and O. Knop, Canadian. J. Chem. 45, 609 (1967); https://doi.org/10.1139/v67-101.

K.R. Whittle, L.M.D. Cranswick, S.A.T. Redfern, I.P. Swainson and G.R. Lumpkin, S. Solid State Chem. 182, 442 (2009); https://doi.org/10.1016/j.jssc.2008.11.008.

M. Pirzda, R. W. Grimes and L. Minervini, Solid State Ionics 140, 201 (2001); https://doi.org/10.1016/S0167-2738(00)00836-5.

E. Reymolds, P.E.R. Blamshard, Q. Zhou and B.J. Kennady. Phys. Rev. B. 85, 132101 (2012); https://doi.org/10.1103/PhysRevB.85.132101.

J. Lian, J. Chen, L. M. Wang, R. C. Ewing, J. M. Farmer, L. A. Boatner and K. B. Helean, Phys. Rev. B 68, 134107 (2003); https://doi.org/10.1103/PhysRevB.68.134107.

B.P. Mandal, P.S.R. Krishna and A.K. Tyagi, J. Solid State Chem. 183, 41 (2010); https://doi.org/10.1016/j.jssc.2009.10.010.

J.B. Goodenough and R.N. Castellano, J. Solid State Chem. 44, 108 (1982); https://doi.org/10.1016/0022-4596(82)90406-6.

M. Fathi Dehkharghani, M.R. Rahimipour and M. Zaheri, Surface and coatings Technology 399, 126174 (2020); https://doi.org/10.1016/j.surfcoat.2020.126174.

M. Malathi, K.Sreenu, G. Ravi, P. Vijaya kumar, C.S. Reddy, R. Guje, R. Velchuri and M. Vithal. J. Chem. Sci. 129(8), 1193 (2017); https://doi.org/10.1007/s12039-017-1321-3.

S. Khademinia, M. Behzad, Intr. Nano. Lett. 5, 101 (2015); https://doi.org/10.1007/s40089-015-0143-x.

S.V. Wang, B.D. Begg and L.M. Wang, J. Mater. Res. 14(12), 4470 (1999); https://doi.org/10.1557/JMR.1999.0606.

N. Sharma, G.V. Subbarao and B.V.R. Chowdari, J. Power Sources 159, 340 (2006); https://doi.org/10.1016/j.jpowsour.2006.04.050.

D. Jin, X. Yu and H. Yang, J. Alloy. Com. 474(1-2), 557 (2009); https://doi.org/10.1016/j.jallcom.2008.06.159.

J. Wu, X.Z. Wei, N.P. Padture, P.G. Klements, M. Gell, E. Garcia, P. Miranzo and M.I. Osendi, J. Am. Ceram. Soc. 85, 3031 (2002); https://doi.org/10.1111/j.1151-2916.2002.tb00574.x.

L. Minervini and R.W. Grimes, J. Am. Ceram. Soc. 83(8), 1873 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01484.x.

M.P. Van Dijk, K.J. De Vries and A.J. Burggraaf, Solid State Ionics 9(10), 913 (1983); https://doi.org/10.1016/0167-2738(83)90110-8.

M.R. Winter and D.R. Clarke, J. Am. Ceram. Soc. 90(2), 533 (2007); https://doi.org/10.1111/j.1551-2916.2006.01410.x.

F.W. Poulsen, M. Glerup and P. Holtappels, Solid State Ionics 135, 595 (2000); https://doi.org/10.1016/S0167-2738(00)00417-3.

K. Chitrarasu, S. Amirthapadia, P. Jegadesan and P. Thangadurai, Mater.Lett. 289, 4 (2018.

J.M. Longo, P.M. Raccah and J.B. Goodenough, Mater. Res. Bull. 4, 191 (1969); https://doi.org/10.1016/0025-5408(69)90056-7.

R. Kanno, Y. Takeda, T. Yamanoto, Y. Kawamoto and O. Yamamoto, J. Solid State Chem. 102, 106 (1993); https://doi.org/10.1006/jssc.1993.1012.

M. Field, B.J. Kennedy and B.A. Hunter, J. Solid State Chem. 151, 25 (2000); https://doi.org/10.1006/jssc.1999.8608.

N. Taira, M. Wakeshima and Y. Hinatsu, J. Solid State Chem. 144, 216 (1999); https://doi.org/10.1006/jssc.1998.8113.

M.D.R. Marques, F.S. Portela, A.A.M. Oliveira, P. Barrozo, N.O. Moreno, P.C.A. Brito and J.A. Aquiar, Physica B 407, 3106 (2012); https://doi.org/10.1016/j.physb.2011.12.037.

C. Abate, V. Esposito, K. Duncan, J.C. Nino, D.M. Gattia, E.D. Wachsman and E. Traversa, J. Am. Ceram. Soc. 93(7), 1970 (2010); https://doi.org/10.1111/j.1551-2916.2010.03666.x.

N. Taira, M. Wakeshima and Y. Hinatsu, J. Mater. Chem. 12, 148 (2002); https://doi.org/10.1039/B105179M.

Q. Cui, N.N. Wang, N. Su, Y.Q. Cui, B.S. Wang, T. Shinmi, T. Irifune, J.A. Alonso and J.G. Cheng, J. Magn. Magn.Mater.490, 165494 (2019); https://doi.org/10.1016/j.jmmm.2019.165494.

J.E. Greedan, N.P. Raju and M.A. Subramanian, Solid State Commun. 99, 399 (1996); https://doi.org/10.1016/0038-1098(96)00295-5.

J. Snyder, J.S. Slusky, R.J. Cava and P. Schiffer, Nature (London) 413, 48 (2001); https://doi.org/10.1038/35092516.

Satoshi Iikubo, Shunsuke Yoshii, Taketomo Kageyama, Keisuke Oda, Yasuyuki Kondo, Kazuhiro Murata1 and Masatoshi Sato, J. Phys. Soc. Japan 70, 212 (2001); https://doi.org/10.1143/JPSJ.70.212.

M. Sato, and J.E. Greedan, J. Solid State Chem. 67, 248 (1987); https://doi.org/10.1016/0022-4596(87)90360-4.

N. Imamura, M. Karppinen, H. Yamauchi and J.B. Goodenough, Phys. Rev. B 82, 132407 (2010); https://doi.org/10.1103/PhysRevB.82.132407.

K. Chitrarasu, S. Jayabalan, S. Amirthapandian and P. Thangadurai, Solid State Science 105, 106245 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106245.

K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka and T. Sakakibara, J. Phys. Soc. Japan 71(6), 1576 (2002); https://doi.org/10.1143/JPSJ.71.1576.

F. Brisse and O. Knop Can. J. chem. 46, 859 (1968); https://doi.org/10.1139/v68-148.

X. Gong, P. Wu, W. Chen and H. Yang, J. Mater. Res. 13(2), 469 (1998); https://doi.org/10.1557/JMR.1998.0061.

H. Kumar, and A.K. Pramanik, J. Phys. Chem. C. 123(20), 13036 (2019); https://doi.org/10.1021/acs.jpcc.9b02011.

D. Pesin and L. Balents, Nature Physics. 6, 376 (2010); https://doi.org/10.1038/nphys1606.

S. Zhu, H. Liu, J. Bian, Y. Feng and Q. Sun, J. Philosophical Magazine 100, 126 (2020); https://doi.org/10.1080/14786435.2019.1667546.

G. Giampoli, J. Li, A.P. Ramirez and M. Subramanian, Inorg. Chem 56, 4706 (2017); https://doi.org/10.1021/acs.inorgchem.7b00345.

J.A. Labrincha, J.R. Frade and F.M.B. Marques, J. Mater. Sci. 28, 3809 (1993); https://doi.org/10.1007/BF00353183.

R. Vassen, X.G. Cao, F. Tietz, D. Basu and D. Stover, J. Am. Ceram. Soc. 83, 2023 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01506.x.

K. Bhattacharya, A. Hartridge, K.K. Malick and J.L. Woodhead, J. Mater. Sci. 29, 6076 (1994); https://doi.org/10.1007/BF00354544.

Z. Wang, G. Zhou, D. Jiang, and S. Wang, J. Advanced Ceramics. 7(4), 289 (2018); https://doi.org/10.1007/s40145-018-0287-z.

Y. Matsumura, M. Yoshinaka, K. Hirota and O. Yamaguchi, Solid State Commun. 104, 341 (1997); https://doi.org/10.1016/S0038-1098(97)00332-3.

M.B. Khanvilkar, A.K. Nikumbh, R.A. Pawar, N.J. Karale, D.V. Nighot and, G.S. Gugale, J. Mater. Sci. in Electronics 30, 13217 (2019); https://doi.org/10.1007/s10854-019-01685-3.

K. Nakamoto, Infrared spectra of Inorganic and coordination compounds (Wiley-Interscience , New York, 2nd Edn. 1970.

J.A. Allan, N.D. Baird and A.L. Kassyk, J. Therm.Anal. 16, 79 (1979); https://doi.org/10.1007/BF01909635.

T.V an Dijk, K.J. de Vries and A.J. Burggraof, Physica Status Solid A 58, 115 (1980); https://doi.org/10.1002/pssa.2210580114.

L. Kong, I. Karatchevtseva, D.J. Gregg, M.G. Blackford, R. Holmes, G. Triani. J. European Ceram. Soc. 33, 3273 (2013) And JCPDS File No. 781623 (https://doi.org/10.1016/j.jeurceramsoc.2013.05.011.

J. Kim, P.C. Shih, K.C. Tsao, Y.T. Pan, X. Yin, C.J. Sun and H. Yang. J. Am. Chem. Soc. 139, 12076 (2017) And JCPDS File No. 830637 (https://doi.org/10.1021/jacs.7b06808.

N. Imamura, M. Karppinen, and H. Yamauchi, Solid State Commun. 144(3-4), 98 (2007); https://doi.org/10.1016/j.ssc.2007.08.015.

Q. Cui, N.N. Wang, N. Su, Y.Q. Cui, B.S. Wang, T. Shinmei, T. Trifune, J.A. Atonso and J.G. Cheng, J. Magn. Magn. Mater. 490, 165494 (2019); https://doi.org/10.1016/j.jmmm.2019.165494.

C. Kaliyaperumal, S. Jayabalan, A. Sanbarkumar and T. Paramasivam, Solid State Sci. 105, 106245 (2020) And JCPDS File No. 130187 (https://doi.org/10.1016/j.solidstatesciences.2020.106245.

JCPDS File No. 750076/.

H. Tinwala, D. V. Shah, J. Menghan and R. Pati, J. Nanosci. Nanotechno. 14(8), 6072 (2014); https://doi.org/10.1166/jnn.2014.8834.

S.A. Chartier, G. Catillon and J.P. Crocombette, Phys. Rev. Lett. 102, 155503 (2009); https://doi.org/10.1103/PhysRevLett.102.155503.

N. Izu, T. Omata and S. Otsuka–yoo–Ma tsuo, J. Alloys compd. 270, 107 (1998); https://doi.org/10.1016/S0925-8388(98)00464-2.

M.A. Subramanian, G. Aravamudan and G.V. Rao, Prog. Solid State chem. 15, 55 (1983) (https://doi.org/10.1016/0079-6786(83)90001-8.

L. Minervini, R.W. Grims and K.E. Stickafus, J. Am. Ceram. Soc. 83, 1873 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01484.x.

R.D. Shannon Acta Crystallographica section A. 32(5), 751 (1976); https://doi.org/10.1107/s0567739476001551.

H. Yamamura, H. Nishino, K. Kakinuma and K. Nomura, J. Ceram. Soc. Jpn. 111, 902 (2003); https://doi.org/10.2109/jcersj.111.902.

JCPDS File No.461508.

B.P. Mandal, N. Gerg, S.M. Sharma and A.K. Tyagi, J. Solid State Chem. 179, 1990 (2006); https://doi.org/10.1016/j.jssc.2006.03.036.

V. Esposito, B.H. Luong, E.D. Bartolomeo, E.D. Wachsman and E. Traversa, J. Electrochem.Soc. 153, A 2232 (2006); https://doi.org/10.1149/1.2358088.

Q.A. Wang, H. wang and X. Yao, J. Appl. Phys.101, 104116 (2007); https://doi.org/10.1063/1.2735409.

J.F. Vente, R.B. Helmholdt and D.J.W. Ijdo, J. Solid State Chem. 108, 18 (1994); https://doi.org/10.1006/jssc.1994.1003.

N.P. Klug and A.E. Alexander, X-ray diffraction procedure (Wiley Interscience, New York, 1954.

K. Ravichandran, D. Nedumaran, Int. J. Mech. Eng. Mater. Sci. 4(1), 25 (2011.

X. Gong, P. Wu, W. Chen and H. Yang, J. Mater. Res 13, 469 (1998); https://doi.org/10.1557/JMR.1998.0061.

B. Jezowwka, Trezebinaptz ‘Rare Earth Spectroscopy’ (world Scientific Publishing Co. Hong Kong, Singapore Ltd.1984) P. 455.

N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline materials (Clarendon, Oxford, 1971); https://doi.org/10.1002/crat.19720070420.

P.A. Cox, J.B. Goodenough, P.J. Tavener, D. Telles and R.G. Egdell, J. Solid State Chem. 62, 360 (1986); https://doi.org/10.1016/0022-4596(86)90251-3.

H. Yamamura, H. Nishino, K. Kakinumo and N, Nomura, J. Ceram. Soc. Japan 111, 902 (2003); https://doi.org/10.2109/jcersj.111.902.

P.J. Wilde and C.R.A. Catlow, Solid State Ionics 112, 173 (1998); https://doi.org/10.1016/S0167-2738(98)00190-8.

J.C. Maxwell, ‘Electricity and Magnetism’ vol.1 (Oxford University Press, Oxford, (1973) p.828.

K.W. Wagner, Ann.Phys.40, 817 (1913.

G.Y. Ahm, S.I. Park, I.B. Shim and C.S. Kim, J. Magn.Magn. Mater. 282, 166 (2004); https://doi.org/10.1016/j.jmmm.2004.04.039.

K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002); http://dx.doi.org/10.1088/0268-1242/17/4/309.

D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Appl. Phys. Lett. 82, 239 (2003); https://doi.org/10.1063/1.1537457.

D. Iusan, B. Sanyal, O. Eriksson, Phys. Rev. B 74, 235208 (2006); https://doi.org/10.1103/PhysRevB.74.235208.

J. Gurgul, M. Rams, Z. Swiatkowska, R. Kmiec and K. Tomala, Phys. Rev. B 75, 64426 (2007); https://doi.org/10.1103/PhysRevB.75.064426.

Y. Shimakawa, Phys.Rev.B 59, 1249 (1999); https://doi.org/10.1103/PhysRevB.59.1249.

M.A. Subramanian, J. Solid state chem. 72, 24 (1988); https://doi.org/10.1016/0022-4596(88)90004-7.

Downloads

Published

2021-06-16

How to Cite

Khanvilkar, M., Nikumbh, A., Patange, S., Pawar, R., Karale, N., Nighot, D., … Gugale, G. (2021). Structural, electrical and magnetic properties of substituted pyrochlore oxide nanoparticles synthesized by the co-precipitation method: Substituted pyrochlore oxide . Physics and Chemistry of Solid State, 22(2), 353–371. https://doi.org/10.15330/pcss.22.2.353-371

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)