Kearns texture parameters, mechanical properties and damageability of titanium sheet after alternating bending

Authors

  • V.V. Usov South Ukrainian National Pedagogical University named after K.D. Ushinsky
  • N.M. Shkatulyak South Ukrainian National Pedagogical University named after K. D. Ushinsky
  • O.S. Savchuk National University "Odessa Maritime Academy”
  • N.I. Rybak South Ukrainian National Pedagogical University named after K.D. Ushinsky

DOI:

https://doi.org/10.15330/pcss.22.3.543-550

Keywords:

Kearns texture parameters, elastic modulus, ultimate tensile strength, conditional yield stress, damageability

Abstract

This work aims to determine the Kearns texture parameters and evaluate on their basis the elastic moduli, mechanical properties (ultimate tensile strength, conditional yield stress), as well as damageability parameters of the sheets commercial titanium (CT-grade 1: 0.04% Fe; 0.015% C; 0.05% N 0.05% c; 0.009% H)  as delivered after rolling and annealing at 840°C (original sheet) and further alternating bending (AB) in the amount of 0.5; 1, 3 and 5 cycles. Damageability parameters characterizing damage accumulation were determined from the elastic modulus change after the above-mentioned number of AB cycles relative to the values ​​of the elastic modulus in different directions of the original sheet of the studied titanium. The elastic constants of the single crystal and the Kearns texture parameters were used to estimate the elastic modulus in the rolling direction (RD) and transverse direction (TD) of the original sheet, and sheets after an above number of AB cycles. The deviation of the calculated and experimental values ​​of the elastic modulus did not exceed 5%. The deviation of the calculated and experimental values of the ultimate tensile strength and yield stress in the RD and TD both in the initial state and after the corresponding number cycles of the AB did not exceed 10%.

References

A. Khorev, Heat, thermo-mechanical treatment and textural hardening of welded titanium alloys; https://www.viam.ru/public/files/2012/2012-206018.pdf [in Russian].

Methods of leveling sheet metal; https://blog.arku.com/us/methods-of-leveling-sheet-metal/.

В. Усов, П. Брюханов, М. Родман, Н. Шкатуляк, М. Шапер, Х. Клозе, Ф.-В. Бах, Деформация и разрушение материалов 9, 33 (2012); http://www.nait.ru/journals/number.php?p_number_id=1692.

N. Shkatulyak, E. Savchuk, V. Usov, Journal of Materials Research and Technology 7(1), 82 (2017); https://doi.org/10.1016/j.jmrt.2017.06.007.

J. Kearns, Thermal Expansion and Preferred Orientation in Zircaloy; https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/WAPDTM472.xhtml.

D. Dzunovich,, S. Betsofen, and P. Panin, Russian Metallurgy (Metally) 10, 813 (2017); https://doi.org/10.1134/S0036029517100056.

V. Grytsyna, D. Malykhin, T. Yurkova et al., East Eur. J. Phys. 3, 38 (2019); https://doi.org/10.26565/2312-4334-2019-3-05.

J. Kearns, Journal of Nuclear Materials 299(2), 171 (2001); https://doi.org/10.1016/S0022-3115(01)00686-9.

Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impuls Excitation of Vibration; http://forlab.pt/wp-content/uploads/2015/08/E1876_mvuj8965.pdf.

L.M. Kachanov, Fundamentals of fracture mechanics (Nauka, Moscow, 1974) [in Russian].

Y.N. Rabotnov, Selected works. Problems of Solid Mechanics (Nauka, Moscow, 1991) [in Russian].

J. Lemaitre, R. Desmorat, Eur. J. Mech. A /Solids/ 19(2), 187 (2000); https://doi.org/10.1016/s0997-7538(00)00161-3.

N. Hansen, H. Schreyer, Int. J. Solid. Structures 31(3), 359 (1994); https://doi.org/10.1016/0020-7683(94)90112-0.

C. Chow, J. Wang, International Journal of Fracture 33(1), 3 (1987); https://doi.org/10.1007/BF00034895.

M. Bobyr, O. Khalimon, O. Bondarets, Journal of Mechanical Engineering NTUU «Kyiv Polytechnic Institute» 67, 5 (2013); http://nbuv.gov.ua/UJRN/VKPI_mash_2013_67_3.

P.R. Morris, Journal of Applied Physics 30(4) (1959); https://doi.org/10.1063/1.1702413.

J.F. Nye, Physical properties of crystals their representation. Their representation by tensors and matrices, (Oxford: University Press, 2006).

Ya.D. Vishnyakov, A.A. Babareko , S.A. Vladimirov, I.V. Egiz, The theory of texture formation in metals and alloys (Nauka, Moscow, 1979 [in Russian].

V. Grytsyna, D. Malykhin, T. Yurkova et al., East. Eur. J. Phys. 3, 38 (2019); https://doi.org/10.26565/2312-4334-2019-3-05.

J. Gong & A. Wilkinson, Philosophical Magazine Letters 90(7), 503 (2010); https://doi.org/10.1080/09500831003772989.

F.K. Mante, G.R. Baran, B. Lucas, Biomaterial 20, 1051 (1999); https://doi.org/10.1016/S0142-9612(98)00257-9.

S.V. Lubenets, A.V. Rusakova, L.S. Fomenko, and V.A. Moskalenko, Low Temp. Phys. 44(1), 73 (2018); https://doi.org/10.1063/1.5020901.

E. Merson, R. Brydson, and A. Brown, Journal of Physics, Conference Series 126, 012020 (2008); https://doi.org/10.1088/1742-6596/126/1/012020.

C. Zambaldi, Y. Yang, T. R. Bieler, D. Raabe, J. Mater. Res., 27(1), 356 (2012); https://doi.org/10.1088/1742-6596/126/1/012020.

M.W. Priddy, D.L. McDowell, S.R. Kalidindi, Acta Materialia 117, 23 (2016); https://doi.org/10.1016/j.actamat.2016.06.053.

F. Khodabakhshi, M. Haghshenas, H. Eskandari, B., Materials Science & Engineering A 636(11), 331 (2015); https://doi.org/10.1016/j.msea.2015.03.122.

Published

2021-09-07

How to Cite

Usov, V., Shkatulyak, N., Savchuk, O., & Rybak, N. (2021). Kearns texture parameters, mechanical properties and damageability of titanium sheet after alternating bending. Physics and Chemistry of Solid State, 22(3), 543–550. https://doi.org/10.15330/pcss.22.3.543-550

Issue

Section

Scientific articles (Physics)