Size Stabilizers in Two-electrode Synthesis of ZnO Nanorods
DOI:
https://doi.org/10.15330/pcss.22.2.380-387Keywords:
ZnO, nanorods, electrodeposition, oxidation, surfactantsAbstract
We modify and optimize a cheap, simple and effective synthesis of zinc oxide nanosized particles by electrodeposition. The core method encompasses the synthesis of ZnO product on the soluble zinc anode of the two-zinc-electrode cell emerged in aqueous NaCl. Resulting particles have the shape of cocoa fruit, thick in the middle and sharp at the edges. They have uniform shape, but broad size distributions with most of the ZnO product 1-2 µm long and 0,5-0,7 µm thick. Thus, auxiliary stabilizers are added to aqueous phase to reduce the size and narrow its distribution in the target product. Here we present the size stabilizing action of four successful stabilizers: urea, polyvinyl alcohol, Triton x-100 and Atlas G3300. All of them reduce particle size and polydispersity. An anionactive surfactant atlas is the most effective, giving an order of magnitude nanorod size reduction.
References
Yi, G.-C., Wang, C. and Park, W.I. Semiconductor Science and Technology, 20, S22--S34. (2005) https://doi.org/10.1088/0268-1242/20/4/003.
Wang, Z.L. Chinese Science Bulletin, 54, 4021. (2009) https://doi.org/10.1007/s11434-009-0456-0.
Moulahi, A. and Sediri, F. Optik - International Journal for Light and Electron Optics, 127, 7586–7593. (2016) https://doi.org/10.1016/j.ijleo.2016.05.128.
Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J. and Morkoç, H. Journal of Applied Physics, 98, 41301. (2005) https://doi.org/10.1063/1.1992666.
Chu, S., Wang, G., Zhou, W., Lin, Y., Chernyak, L., Zhao, J., Kong, J., Li, L., Ren, J. and Liu, J. Nature Nanotechnology, 6, 506–510. (2011) https://doi.org/10.1038/nnano.2011.97.
Na, J.H., Kitamura, M., Arita, M. and Arakawa, Y. Applied Physics Letters, 95, 253303. (2009) https://doi.org/10.1063/1.3275802.
Huang, Z., Dou, Y., Wan, K., Wu, F., Fang, L., Ruan, H., Hu, B., Meng, F. and Liao, M. Journal of Materials Science: Materials in Electronics. (2017) https://doi.org/10.1007/s10854-017-7675-y.
Saleh, S.M., Soliman, A.M., Sharaf, M.A., Kale, V. and Gadgil, B. Journal of Environmental Chemical Engineering, 5, 1219–1226. (2017) https://doi.org/http://dx.doi.org/10.1016/j.jece.2017.02.004.
Wang, Z.L., Yang, R., Zhou, J., Qin, Y., Xu, C., Hu, Y. and Xu, S. Materials Science and Engineering: R: Reports, 70, 320–329. (2010) https://doi.org/http://dx.doi.org/10.1016/j.mser.2010.06.015.
Renganathan, B. and Ganesan, A.R. Optical Fiber Technology, 20, 48–52. (2014) https://doi.org/10.1016/j.yofte.2013.11.007.
Zhu, L., Li, Y. and Zeng, W. Physica E: Low-dimensional Systems and Nanostructures, 94, 123–125. (2017) https://doi.org/http://dx.doi.org/10.1016/j.physe.2017.08.004.
Abdulrahman1, A.F., Ahmed, S.M., Ahmed, N.M. and Almessiere, M.A. AIP Conference Proceedings, 1875, 20004. (2017) https://doi.org/10.1063/1.4998358.
Ong, C.B., Ng, L.Y. and Mohammad, A.W. Renewable and Sustainable Energy Reviews, 81, 536–551. (2018) https://doi.org/10.1016/j.rser.2017.08.020.
Ameen, S., Akhtar, M.S. and Shin, H.S. Materials Letters. (2017) https://doi.org/10.1016/j.matlet.2017.07.117.
Cao, M., Wang, F., Zhu, J., Zhang, X., Qin, Y. and Wang, L. Materials Letters, 192, 1–4. (2017) https://doi.org/10.1016/j.matlet.2017.01.051.
Lv, X., Liu, X., Sun, Q., Wang, Y. and Yan, B. Ceramics International, 43, 3306–3313. (2017) https://doi.org/http://dx.doi.org/10.1016/j.ceramint.2016.11.168.
Giunta, T., Young, E.D., Warr, O., Kohl, I., Ash, J.L., Martini, A., Mundle, S.O.C., Rumble, D., Pérez-Rodríguez, I., Wasley, M., LaRowe, D.E., Gilbert, A. and Sherwood Lollar, B. Geochimica et Cosmochimica Acta, Elsevier Ltd, 245, 327–351. (2019) https://doi.org/10.1016/j.gca.2018.10.030.
Izyumskaya, N., Tahira, A., Ibupoto, Z.H., Lewinski, N., Avrutin, V., Özgür, Ü., Topsakal, E., Willander, M. and Morkoç, H. ECS Journal of Solid State Science and Technology, 6, Q84–Q100. (2017) https://doi.org/10.1149/2.0291708jss.
Zhou, J., Xu, N.S. and Wang, Z.L. Advanced Materials, 18, 2432–2435. (2006) https://doi.org/10.1002/adma.200600200.
AlZayed, N.S., JeanEbothé, Michel, J., Kityk, I. V, Yanchuk, O.M., Prots, D.I. and Marchuk, O. V. Physica E, 60, 220–223. (2014) https://doi.org/10.1016/j.physe.2014.01.032.
Tian, Z.R., Voigt, J.A., Liu, J., Mckenzie, B., Mcdermott, M.J., Rodriguez, M.A., Konishi, H. and Xu, H. Nature Materials, 2, 821–826. (2003) https://doi.org/10.1038/nmat1014.
Zarghami, Z., Ramezani, M. and Motevalli, K. Journal of Cluster Science, 27, 1451–1462. (2016) https://doi.org/10.1007/s10876-016-1011-1.
Li, C., Fang, G., Li, J., Ai, L., Dong, B. and Zhao, X. The Journal of Physical Chemistry C, 112, 990–995. (2008) https://doi.org/10.1021/jp077133s.
GZ, C. The Journal of Physical Chemistry B, 108, 19921–19931. (2004) https://doi.org/10.1021/jp040492s.
Zhou, Y., Xu, L., Wu, Z., Li, P. and He, J. Optik - International Journal for Light and Electron Optics, 130, 673–680. (2017) https://doi.org/10.1016/j.ijleo.2016.10.119.
Sönmezoğlu, S., Eskizeybek, V., Toumiat, A. and Avcı, A. Journal of Alloys and Compounds, 586, 593–599. (2014) https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2013.10.102.
Yolaçan, D. and Sankir, N.D. Journal of Alloys and Compounds. (2017) https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2017.07.314.
Feng, W., Huang, P., Wang, B., Wang, C., Wang, W., Wang, T., Chen, S., Lv, R., Qin, Y. and Ma, J. Ceramics International, 42, 2250–2256. (2016) https://doi.org/http://dx.doi.org/10.1016/j.ceramint.2015.10.018.
Kim, J.-H., Kim, K.-W., Ryu, K.-S. and Cho, K.-K. Materials Technology, 27, 18–20. (2012) https://doi.org/10.1179/175355511X13240279339527.
Pradhan, D., Sindhwani, S. and Leung, K.T. Nanoscale Research Letters, 5, 1727. (2010) https://doi.org/10.1007/s11671-010-9702-2.
Wu, X.-J., Zhu, F., Mu, C., Liang, Y., Xu, L., Chen, Q., Chen, R. and Xu, D. Coordination Chemistry Reviews, 254, 1135–1150. (2010) https://doi.org/http://dx.doi.org/10.1016/j.ccr.2010.02.014.
Zaraska, L., Mika, K., Syrek, K. and Sulka, G.D. Journal of Electroanalytical Chemistry, 801, 511–520. (2017) https://doi.org/http://dx.doi.org/10.1016/j.jelechem.2017.08.035.
Wang, Y.-C., Leu, I.-C. and Min-Hsiung, H. Electrochemical and Solid-State Letters, 5, C53–C55. (2002) https://doi.org/10.1149/1.1454547.
Wang, Y.C., Leu, I.C. and Hon, M.H. J. Mater. Chem., The Royal Society of Chemistry, 12, 2439–2444. (2002) https://doi.org/10.1039/B111189M.
Peulon, S. and Lincot, D. Advanced Materials, WILEY-VCH Verlag GmbH, 8, 166–170. (1996) https://doi.org/10.1002/adma.19960080216.
Jiangfeng, G., Zhaoming, D., Qingping, D., Yuan, X. and Weihua, Z. Journal of Nanomaterials, 2010. (2010) https://doi.org/10.1155/2010/740628.
Yanchuk, O.M., Ebothé, J., El-Naggar, A.M., Albassam, A., Tsurkova, L. V, Marchuk, O. V, Lakshminarayana, G., Tkaczyk, S., Kityk, I. V, Fedorchuk, A.O., Vykhryst, O.M. and Urubkov, I. V. Physica E, 86, 184–189. (2017) https://doi.org/10.1016/j.physe.2016.10.028.
Reshak, A.H., Yanchuk, O.M., Prots, D.I., Tsurkova, L. V, Marchuk, O. V, Urubkov, I. V, Pekhnyo, V.A., Fedorchuk, O., Alahmed, Z.A. and Kamarudin, H. Int. J. Electrochem. Sci., 9, 6378–6386. (2014).
Yang, J., Liu, G., Lu, J., Qiu, Y. and Yang, S. Applied Physics Letters, 90, 103109. (2007) https://doi.org/10.1063/1.2711532.
Voon, C.H., Lim, B.Y., Foo, K.L., Hashim, L.N., Ho, S.A. and Ong, S.A. Nanoscience & Nanotechnology-Asia, 7. (2017) https://doi.org/10.2174/2210681207666170615114602.
Ding, L., Zhang, R. and Fan, L. Nanoscale Research Letters, 8, 78. (2013) https://doi.org/10.1186/1556-276X-8-78.
Lepot, N., Bael, M.K. Van, den Rul, H. Van, D’Haen, J., Peeters, R., Franco, D. and Mullens, J. Materials Letters, 61, 2624–2627. (2007) https://doi.org/10.1016/j.matlet.2006.10.025.
Kumar, S., Lee, H.-J., Yoon, T.-H., Murthy, C.N. and Lee, J.-S. Crystal Growth & Design, 16, 3905–3911. (2016) https://doi.org/10.1021/acs.cgd.6b00479.
Li, Z., Xiong, Y. and Xie, Y. Inorganic Chemistry, 42, 8105–8109. (2003) https://doi.org/10.1021/ic034029q.
Duo, S., Li, Y., Zhang, H., Liu, T., Wu, K. and Li, Z. Materials Characterization, 114, 185–196. (2016) https://doi.org/http://dx.doi.org/10.1016/j.matchar.2016.02.021.
Guo, Y., Lin, S., Li, X. and Liu, Y. Applied Surface Science, 384, 83–91. (2016) https://doi.org/10.1016/j.apsusc.2016.04.036.
Duo, S., Li, Y., Liu, Z., Zhong, R. and Liu, T. Materials Science in Semiconductor Processing, 56, 196–212. (2016) https://doi.org/http://dx.doi.org/10.1016/j.mssp.2016.08.018.
Ibrahim, N.A., Nada, A.A., Hassabo, A.G., Eid, B.M., Noor El-Deen, A.M. and Abou-Zeid, N.Y. Chemical Papers, 71, 1365–1375. (2017) https://doi.org/10.1007/s11696-017-0132-9.
Marimuthu, T. and Anandhan, N. AIP Conference Proceedings, 1832, 80014. (2017) https://doi.org/10.1063/1.4980474.
Kouhestanian, E., Mozaffari, S.A., Ranjbar, M., SalarAmoli, H. and Armanmehr, M.H. Superlattices and Microstructures, 96, 82–94. (2016) https://doi.org/http://dx.doi.org/10.1016/j.spmi.2016.05.012.
Rameshbabu, R., Kumar, N., Karthigeyan, A. and Neppolian, B. Materials Chemistry and Physics, 181, 106–115. (2016) https://doi.org/http://dx.doi.org/10.1016/j.matchemphys.2016.06.040.
Picca, R.A., Sportelli, M.C., Lopetuso, R. and Cioffi, N. Journal of Sol-Gel Science and Technology, 81, 338–345. (2017) https://doi.org/10.1007/s10971-016-4268-9.
Miles, D.O., Cameron, P.J. and Mattia, D. J. Mater. Chem. A, The Royal Society of Chemistry, 3, 17569–17577. (2015) https://doi.org/10.1039/C5TA03578C.