Influence of surface morphology on electrophysical properties of PbTe: Sb films
DOI:
https://doi.org/10.15330/pcss.22.3.415-419Keywords:
PbTe:Sb, thin films, electrophysical properties, growth of filmsAbstract
The electrophysical properties of polycrystalline doped semiconductor thin films PbTe: Sb deposited on mica and sital (glass based ceramic) substrates are considered. The thickness dependencies of carrier mobility, of Hall coefficient and of Seebeck coefficient, and the correlations between these parameters for films deposited on different substrate materials were studied. The peculiarities of growth of thin films and their structural parameters are analyzed taking into account the features of the ‘substrate – film’ boundary section.
References
H. Burkhard, G. Bauer, & A. Lopez-Otero, Solid State Communications 18(7), 773 (1976); https://doi.org/10.1016/0038-1098(76)90201-5.
A.V. Dmitriev, & I.P. Zvyagin, Physics-Uspekhi 53(8), 789 (2010); https://doi.org/10.3367/UFNe.0180.201008b.0821.
B. Dzundza, L. Nykyruy, T. Parashchuk, E. Ivakin, Yа. Yavorsky, L. Chernyak, & Z. Dashevsky, Physica B: Condensed Matter. 588, 412178 (2020); https://doi.org/10.1016/j.physb.2020.412178.
Z.H. Dughaish, Physica B: Condensed Matter, 322(1-2), 205 (2002); https://ui.adsabs.harvard.edu/link_gateway/2002PhyB..322..205D/doi:10.1016/S0921-4526(02)01187-0.
S.P. Zimin, E.S. Gorlachev, Nanostructured lead chalcogenides: monograph (YarSU, Yaroslavl, 2011).
Yа. P. Saliy, D.M. Freik, I.K. Yurchyshyn, & I.M. Freik, J. Nano-and Electronic Physics, 5(3), 03038 (2013); https://jnep.sumdu.edu.ua/download/numbers/2013/3/articles/en/jnep_eng_2013_V5_No3_03038_Saliy.pdf.
L. Nykyruy, M. Ruvinskiy, E. Ivakin, O. Kostyuk, I. Horichok, I. Kisialiou & A. Hrubyak, Physica E: Low-dimensional systems and nanostructures 106, 10 (2019); https://doi.org/10.1016/j.physe.2018.10.020.
J.P. Heremans, C.M. Thrush, & D.T. Morelli, Physical Review B, 70(11), 115334 (2004); https://doi.org/10.1103/PhysRevB.70.115334.
Yа. Saliy, M. Ruvinskiy, & L. Nykyruy, Modern Physics Letters B 31(03), 1750023 (2017); https://doi.org/10.1142/S0217984917500233.
B. Naidych, T. Parashchuk, I. Yaremiy, M. Moyseyenko, O. Kostyuk, O. Voznyak, & L. Nykyruy, Journal of Electronic Materials 50(2), 580 (2021); https://doi.org/10.1007/s11664-020-08561-5.
Yа. P. Saliy, B.S. Dzundza, I.S. Bylina, & O.B. Kostyuk, Journal of nano-and electronic physics 8(2), 2045 (2016).
T. Parashchuk, I. Horichok, A. Kosonowski, O. Cherniushok, P. Wyzga, G. Cempura, & K.T. Wojciechowski, Journal of Alloys and Compounds 860, 158355 (2021); https://doi.org/10.1016/j.jallcom.2020.158355.
C. Krataitong, K. Srichai, & A. Tubtimtae, Materials Letters, 285, 129085 (2021); https://doi.org/10.1016/j.matlet.2020.129085.
Saliy, Y. P., & Yavorskyi, R. S. (2019). The redistribution modeling of implanted impurity stimulated by vacancies. Materials Today: Proceedings 35(4), 576-578 (2021); https://doi.org/10.1016/j.matpr.2019.11.017.
D.M. Freik, S.I. Mudryi, I.V. Gorichok, R.O. Dzumedzey, O.S. Krynytskyi, & T.S. Lyuba, Ukrainian Journal of Physics 59(7), 706 (2014); https://doi.org/10.15407/ujpe59.07.0706.
V.A. Shchukin, D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999); https://doi.org/10.1103/RevModPhys.71.1125.
D.M. Freik, Y. P. Saliy, I.M. Lishchynskyy, V.V. Bachuk, & N.Y. Stefaniv, Journal of Nano-and Electronic Physics 4(2), 2011 (2012).
A.F. Craievich, O.L. Alves, & L.C. Barbosa, Journal of Applied Crystallography 30(5), 623 (1997); https://doi.org/10.1107/S0021889897001799.
E.H. Sondheimer, Adv. Phys. 1, 1 (1952); https://doi.org/10.1080/00018735200101151.