Augmented the Structure, Electronic and Optical Characteristics of PEO Doped NiO for Electronics Applications
DOI:
https://doi.org/10.15330/pcss.22.3.501-508Keywords:
PEO, NiO, DFT, optical properties, electronics devices, Gaussian 09Abstract
This paper aims to investigate the structural, optical and electrical properties of PEO doped with NiO. The DFT calculations have been performed using Gaussian 09 package of programs. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affinity, electronegativity, electrochemical hardness, electronic softness and electrophilic index. The obtained results showed that the doping PEO with NiO improved the structural, optical, electronic and electrical characteristics where the energy band gap decreases about 67.4% with addition of NiO which make the (PEO-NiO) composites are promising materials for flexible optoelectronics fields in the development of electronics applications.
References
P. Lutsyk, L. Dzura, A. Kutsenko, Ya. Vertsimakha, J. Sworakowski, Quantum Electronics & Optoelectronics 8(3), 54 (2005); https://doi.org/10.15407/spqeo8.03.054.
S. Devikala, P. Kamaraj and M. Arthanareeswari, Chem. Sci. Trans. 2(S1), S129 (2013); https://doi.org/10.7598/cst2013.26.
I.R. Agool, K.J. Kadhim, A. Hashim, International Journal of Plastics Technology 21(2), (2017), https://doi.org/10.1007/s12588-017-9192-5.
K. Das, P. Pendke and J.M. Keller, Research Journal of Recent Sciences 5, 79 (2016).
El. Metwally M. Abdelrazek, Amr M. Abdelghany, Shalabya I. Badr, Mohamed A. Morsi, J. mater. Res. Technol. 7(4), 419 (2018); https://doi.org/10.1016/j.jmrt.2017.06.009.
P. Chen, Qualitative MO Theory and Its Application to Organic Reactions, Thermal Rearrangements, Pericyclic Reactions (ETH Zurich, SS, Zurich, 2005).
J. Simons, An introduction to theoretical chemistry (Cambridge University Press, 2003).
D. Marx, & J. Hutter, Modern methods and algorithms of quantum chemistry 1(301-449), 141 (2000).
H. Dorsett, & A. White, Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials (Defence science and technology organization Salisbury, Australia, 2000).
I.N. Levine, D.H. Busch, & H. Shull, Quantum chemistry (Vol. 6) (Upper Saddle River, NJ: Pearson Prentice Hall, 2009).
H.M. Kampen, H. Méndez, & D.R.T. Zahn, Energy Level Alignment at Molecular Semiconductor/GaAs (100) Interaces: Where is the LUMO (University of Chemnitz, Institut fur, Germany, 1999).
M.J. Frisch, & F.R. Clemente, Gaussian 09, Revision A. 01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zhe.
K. Sadasivam, & R. Kumaresan, Computational and Theoretical Chemistry 963(1), 227 (2011); https://doi.org/10.1016/j.comptc.2010.10.025.
O.A. Kolawole, & S. Banjo, Theoretical Studies of Anti-corrosion Properties of Triphenylimidazole Derivatives in Corrosion Inhibition of Carbon Steel in Acidic Media via DFT Approach. (2018).
P.W. Atkins, & R.S. Friedman, Molecular quantum mechanics (Oxford university press, 2011).
V. Subramanian, Quantum Chemical Descriptors in Computational Medicinal Chemistry for Chemoinformatics. Central Leather Research Institute, Chemical Laboratory, 0-0000. (2005).
L. Shenghua, Y. He, & J. Yuansheng, International Journal of Molecular Sciences 5(1), 13 (2004); https://doi.org/10.3390/i5010013.
A.J. Camargo, K.M. Honório, R. Mercadante, F.A. Molfetta, C.N. Alves, & A.B. da Silva, Journal of the Brazilian Chemical Society, 14(5), 809 (2003); https://doi.org/10.1590/S0103-50532003000500017.
P. Udhayakala, & T.V. Rajendiran, Journal of Chemical, Biological and Physical Sciences (JCBPS) 2(1), 172 (2011).
S.X. Tao, A.M. Theulings, J. Smedley, & H. van der Graaf, Diamond and Related Materials 58, 214 (2015); https://doi.org/10.1016/j.diamond.2015.08.005.
V. Nagarajan, Saravanakannan Venkatesan, R. Chandiramouli, International Journal of ChemTech Research, 6(14), 5466 (2014).
Aseel Hadi, Ahmed Hashim, Yahya Al-Khafaji, Transactions on Electrical and Electronic Materials 21, (2020); https://doi.org/10.1007/s42341-020-00189-w.
Ahmed Hashim, J Mater Sci: Mater Electron, (2021); https://doi.org/10.1007/s10854-020-05032-9.
H.H. Khalid, Al‑Attiyah, Ahmed Hashim, Sroor Fadhil Obaid, International Journal of Plastics Technology 23(1), (2019); https://doi.org/10.1007/s12588-019-09228-5.
Ahmed Hashim, Yahya Al-Khafaji, Aseel Hadi, Transactions on Electrical and Electronic Materials 20, (2019); https://doi.org/10.1007/s42341-019-00145-3.
Qayssar M. Jebur, Ahmed Hashim, Majeed A. Habeeb, Structural, Transactions on Electrical and Electronic Materials (2019); https://doi.org/10.1007/s42341-019-00121-x.
Ahmed Hashim, Enhanced Structural, Journal of Inorganic and Organometallic Polymers and Materials 30, (2020); https://doi.org/10.1007/s10904-020-01528-3.
Ahmed Hashim, Zinah S. Hamad, Egypt. J. Chem. 63(2), (2020); https://doi.org/10.21608/EJCHEM.2019.7264.1593.
A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Ukr. J. Phys. 64(2), (2019); https://doi.org/10.15407/ujpe64.2.157.
Ahmed Hashim, Journal of Inorganic and Organometallic Polymers and Materials 31, (2021); https://doi.org/10.1007/s10904-020-01846-6.